Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Gibbon genome sequenced

11.09.2014

Mobile DNA element allows conclusions on the evolution of apes

An international team of researchers that includes Christian Roos, Markus Brameier and Lutz Walter from the German Primate Center (DPZ) in Göttingen, have decoded the genome of gibbons from Southeast Asia. With this, the entire genetic information of five different species of this primate family has been sequenced for the first time.


Northern White-cheeked Gibbon male (Nomascus leucogenys)

Image: Tilo Nadler


Northern White-cheeked Gibbon female (Nomascus leucogenys)

Image: Tilo Nadler

Comparisons with the genome data of humans and our closest relatives, the great apes, show that while we all genetically have the same ancestors, the genetic information of the gibbons has changed more rapidly and stronger in the course of the evolutionary process.

The researchers could identify a new DNA element that only occurs in gibbons. This DNA element increases the mutation rate, and is thus of crucial importance for the evolutionary development. Thanks to the DNA element, the gibbon is also known as the one with the long, strong arms who elegantly moves through the forests of Southeast Asia. The study published in the current issue of Nature, allows important insights in the molecular fundamentals of the evolutionary process (Carbone et al. 2014)

The gibbons, known as small apes are genetically farther from humans than the great apes chimpanzees, bonobos, gorillas and orang-utans. In the genealogy of the evolutionary developments of primates, the gibbons do occupy a key position. In the course of the evolutionary process, they were the first to split from the hereditary line of the great apes and humans.

„The complete sequencing of the gibbon genome was pending until now“, says Christian Roos, a scientist from the Primate Genetics Laboratory at the DPZ. “In order to fully understand the human evolution and to draw conclusions on our evolutionary roots, we need to conduct phylogenetic research of our more distant relatives.“

Genetic disorder and jumping gene sections

In their genome analysis, the researchers discovered that the genetic information of the gibbons differs in their entirety from that of humans and of apes. “The genetic information itself is similar to ours”, explains Christian Roos. “However, large segments of DNA and in such, many genes are arranged differently on the individual chromosomes.” This "chromosomal disorder" is a key feature of the gibbon genome and has probably occurred after their secession from the ancestral line of the apes and humans.

Through further research on the gibbon DNA, scientists were finally able to identify a possible cause for these changes in the genome: A jumping DNA element called LAVA transposon can be copied and integrated elsewhere in the genome. So far, transposons or jumping genes have been detected in many different organisms. However, the LAVA transposon is unique to the gibbon genome.

The special feature of this DNA element is its positioning in precisely those genes that play a role in the chromosome distribution during cell division and thus influences them. Analyses of the phylogenetic development of the gibbon line also indicate a connection to the existence of the LAVA transposons. Their first appearance can be traced back with a high probability to the time of the splitting of the gibbons from the line of apes and humans.

Genetic basis for gibbon-specific way of life

Through comparative DNA analyses, the researchers could also identify genes subjected to a positive selection. In the course of evolution, genes that favored the adaptation of the gibbons to their way of life, continued to develop. These include genes responsible for anatomical specifications such as longer arms or stronger muscles. Gibbon genes, which have undergone a positive selection are, for example TBX5, which is required for the development of the front extremities and COL1A1, responsible for the development of the protein collagen. The latter is one of the main components of connective tissues in bones, teeth and tendons.

"These genes are positively selected only in the gibbon genome", says Christian Roos. “In future projects, sequencing will be performed on other gibbon species. We hope to be able to further characterize these genes and to identify other gibbon-specific genes.”

Original publication

Carbone, L. et al. (2014): Gibbon genome and the fast karyotype evolution of small apes. Nature Epub ahead of print. DOI: 10.1038/nature13679

Contact

PD Dr. Christian Roos
Primate Genetics Laboratory
German Primate Center
phone +49 551 3851-300
e-mail: croos@dpz.eu

Dr. Susanne Diederich
Public Relations
German Primate Center
phone: +49 551 3851-359
E-Mail: sdiederich@dpz.eu

 
The German Primate Center (DPZ) – Leibniz Institute for Primate Research conducts biological and biomedical research with primates in infection research, neuroscience and primate biology. The DPZ maintains three field stations in the tropics and is the reference and service center for all aspects of primate research. The DPZ is one of 89 research and infrastructure facilities of the Leibniz Association.

Weitere Informationen:

http://medien.dpz.eu/webgate/keyword.html?currentContainerId=2301 - Printable images
http://www.dpz.eu/en/info-center/media-center/video.html - video (German language)
http://www.dpz.eu/en/news/news.html - DPZ website

Dr. Susanne Diederich | idw - Informationsdienst Wissenschaft

Further reports about: DNA DPZ Gibbon Leibniz-Institut apes arms disorder genes genetically phylogenetic primate species transposons

More articles from Life Sciences:

nachricht Bolstering fat cells offers potential new leukemia treatment
17.10.2017 | McMaster University

nachricht Ocean atmosphere rife with microbes
17.10.2017 | King Abdullah University of Science & Technology (KAUST)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Ocean atmosphere rife with microbes

17.10.2017 | Life Sciences

Neutrons observe vitamin B6-dependent enzyme activity useful for drug development

17.10.2017 | Life Sciences

NASA finds newly formed tropical storm lan over open waters

17.10.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>