Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


GIANT-Coli: A novel method to quicken discovery of gene function

Think researchers know all there is to know about Escherichia coli, commonly known as E. coli? Think again.

"E. coli has more than four thousand genes, and the functions of one-fourth of these remain unknown," says Dr. Deborah Siegele, a biology professor at Texas A&M University whose laboratory specializes in carrying out research using the bacterium.

Harmless E. coli strains are normally found in the intestines of many animals, including humans, but some strains can cause diseases.

Siegele and her co-workers at the University of California San Francisco, Nara Institute of Science Technology and Purdue University have devised a novel method that allows rapid and large-scale studies of the E. coli genes. The researchers believe their new method, described in the current online issue of Nature Methods, will allow them to gain a better understanding of the E. coli gene functions.

The principle behind this new method is genetic interaction. Interaction between genes produces observable effects, and this allows researchers to identify the gene functions. The research team has called their new method GIANT-Coli, short for genetic interaction analysis technology for E. coli.

The team believes that its method has great potential to quicken the progress of discovering new gene functions. The use of GIANT-Coli has already allowed researchers to identify some previously unknown genetic interactions in E. coli.

To study genetic interaction, researchers need to use what they call double-mutant strains. GIANT-Coli allows large-scale generation of these double-mutant strains (high-throughput generation). And this is the first time that a high-throughput generation method for double mutants of E. coli has been developed.

Why is it so important to know the E. coli better? "Much of what we know about other bacteria, including the more dangerous ones like Vibrio cholerae, comes from our knowledge of E. coli," says Siegele. "The E. coli is a model organism."

Siegele says that GIANT-Coli can be developed to study genetic interactions in other bacteria, and because some proteins are conserved from bacteria to humans, perhaps some of the results can even be extrapolated to gene function in humans. Moreover, Siegele points out that the method has obvious application in medicine because understanding gene functions in harmful bacteria will help in developing better treatment approaches.

Dr. Deborah Siegele | EurekAlert!
Further information:

Further reports about: Coli E. coli GIANT-Coli bacteria gene function genetic interactions method

More articles from Life Sciences:

nachricht Gene therapy shows promise for treating Niemann-Pick disease type C1
27.10.2016 | NIH/National Human Genome Research Institute

nachricht 'Neighbor maps' reveal the genome's 3-D shape
27.10.2016 | International School of Advanced Studies (SISSA)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

How nanoscience will improve our health and lives in the coming years

27.10.2016 | Materials Sciences

OU-led team discovers rare, newborn tri-star system using ALMA

27.10.2016 | Physics and Astronomy

'Neighbor maps' reveal the genome's 3-D shape

27.10.2016 | Life Sciences

More VideoLinks >>>