Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New genetic tool helps researchers to analyse cells’ most important functions

12.04.2011
Although it has been many years since the human genome was first mapped, there are still many genes whose function we do not understand. Researchers from the University of Gothenburg, Sweden, and the University of Toronto, Canada, have teamed up to produce and characterize a collection of nearly 800 strains of yeast cells that make it possible to study even the most complicated of genes.

One common way of studying the role of genes in cells is to remove a gene and investigate the effect of the loss. Genes are very similar in both yeast and people, which is one reason why the baker’s and brewer’s yeast Saccharomyces cerevisiae has become a firm favourite with geneticists – and in yeast it is easy to make this kind of genetic change.

However, this does not work for many genes as the loss causes the cells to die. These are known as essential genes and are therefore difficult to study. This is a major problem for researchers as essential genes are often involved in crucial life processes. These essential genes are also the most well-conserved over long evolutionary distances, like between humans and yeast.

Together with researchers from the University of Toronto, Anders Blomberg and Jonas Warringer from the University of Gothenburg’s Department of Cell- and Molecular Biology have produced a collection of nearly 800 strains of yeast cells where the function of these essential genes can be studied. This new genetic tool is now being made available to other researchers.

“The trick is to use temperature-sensitive mutants for the genes you want to study,” says professor Anders Blomberg. “These mutants have amino acid changes, which make the resultant protein sensitive to higher temperatures but able to function normally at normal temperatures. And at intermediary temperatures one can set the desired activity of the mutant protein.”

The Gothenburg researchers have worked for many years on characterising the changes in yeast mutants that result from genetic changes or environmental factors automatically and on a large scale. They will continue to develop and characterize the new collection of yeast cells to facilitate the systematic analysis of the function of all essential genes.

The applications of this genetic tool are exemplified in an article published in the scientific journal Nature Biotechnology.

Bibliographic data:
Journal: Nature Biotechnology
Title: Systematic exploration of essential yeast gene function with temperature-sensitive mutants

Authors: Zhijian Li, Franco J Vizeacoumar, Sondra Bahr, Jingjing Li, Jonas Warringer, Frederick S Vizeacoumar, Renqiang Min, Benjamin VanderSluis, Jeremy Bellay, Michael DeVit, James A Fleming, Andrew Stephens, Julian Haase, Zhen-Yuan Lin, Anastasia Baryshnikova, Hong Lu, Zhun Yan, Ke Jin, Sarah Barker, Alessandro Datti, Guri Giaever, Corey Nislow, Chris Bulawa, Chad L Myers, Michael Costanzo, Anne-Claude Gingras, Zhaolei Zhang

For more information, please contact:
Anders Blomberg, professor, Department of Cell- and Molecular Biology, University of Gothenburg, tel: +46 (0)31 786 2589

anders.blomberg@cmb.gu.se

Jonas Warringer, Department of Cell- and Molecular Biology, University of Gothenburg, tel: +46 (0)31 786 3961

jonas.warringer@cmb.gu.se

Helena Aaberg | idw
Further information:
http://www.gu.se
http://www.nature.com/nbt/journal/v29/n4/full/nbt.1832.html

More articles from Life Sciences:

nachricht Multifunctional Platform for the Delivery of Gene Therapeutics
22.01.2018 | Angewandte Chemie International Edition

nachricht Charge Order and Electron Localization in a Molecule-Based Solid
22.01.2018 | Max-Planck-Institut für Chemische Physik fester Stoffe

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Multifunctional Platform for the Delivery of Gene Therapeutics

22.01.2018 | Life Sciences

The world's most powerful acoustic tractor beam could pave the way for levitating humans

22.01.2018 | Power and Electrical Engineering

Siberian scientists learned how to reduce harmful emissions from HPPs

22.01.2018 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>