Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Genetic damage in minibacteria in aphids and ants repaired by faulty copying

26.09.2008
Aphids (plant lice) and ants carry minibacteria that produce essential amino acids and vitamins. These minibacteria have very limited genetic material and many broken genes.

Now, in an article in the journal Proceedings of the National Academy of Sciences, PNAS, Uppsala researchers are presenting experimental findings that show that repeated errors in the conversion of DNA to protein save the function of the damaged genes.

Many insects, such as aphids, ants, and tse-tse flies are dependent on special minibacteria for their survival. These bacteria live isolated in special organs in the insects? bodies and are packed into their eggs to be spread to the next generation of insects. In this closed environment a great deal of genetic damage takes place, and the minibacteria?s genes are successively degraded.

Genetic damage arises during copying of the DNA string in the mother cell to the new DNA strings in the daughter cells. DNA is made up of four letters-?A, C, G, T. During copying of the same letter in a row, errors easily occur: for example, 10A can be erroneously copied as 9A or 11A or 12A. If such an error occurs in a gene, the reading frame is destroyed, and the gene loses its function. It is extremely uncommon for bacteria to have long series of the same letter in their genes. The minibacteria that live in insects, on the other hand, can surprisingly have hundreds of such regions in their genes. In several cases these regions have accumulated genetic mutations and the genes have popped out of their reading frame.

"Theoretically speaking, these damaged genes should no longer be able to function", says Siv Andersson.

In the new study, the scientists have shown that despite their damage these genes become protein. The secret lies in the fact that new errors occur during copying of DNA to RNA, so a mixture of RNA molecules with 9A, 10A, 11A, and 12A is formed. Owing to the new errors, in some cases the original damage is repaired, and the gene pops back into its proper reading frame so that protein can be created.

"The result is a robust but extremely inefficient system. The major share of the copied material is useless and will be degraded. But thanks to the small proportion that turn out right as a result of the repeated copying errors, the bacteria can survive, thereby making it possible for the aphids and ants to survive", says Siv Andersson.

These findings are of value to experiments being carried out around the world in attempts to use engineering to create minibacteria using artificial genetic material.

Anneli Waara | alfa
Further information:
http://www.pnas.org/content/early/2008/09/23/0806554105.abstract
http://www.uu.se

Further reports about: Aphids DNA Error Genetic Genetic damage RNA ants copying genetic mutation minibacteria

More articles from Life Sciences:

nachricht Multi-institutional collaboration uncovers how molecular machines assemble
02.12.2016 | Salk Institute

nachricht Fertilized egg cells trigger and monitor loss of sperm’s epigenetic memory
02.12.2016 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>