Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Genetic damage in minibacteria in aphids and ants repaired by faulty copying

26.09.2008
Aphids (plant lice) and ants carry minibacteria that produce essential amino acids and vitamins. These minibacteria have very limited genetic material and many broken genes.

Now, in an article in the journal Proceedings of the National Academy of Sciences, PNAS, Uppsala researchers are presenting experimental findings that show that repeated errors in the conversion of DNA to protein save the function of the damaged genes.

Many insects, such as aphids, ants, and tse-tse flies are dependent on special minibacteria for their survival. These bacteria live isolated in special organs in the insects? bodies and are packed into their eggs to be spread to the next generation of insects. In this closed environment a great deal of genetic damage takes place, and the minibacteria?s genes are successively degraded.

Genetic damage arises during copying of the DNA string in the mother cell to the new DNA strings in the daughter cells. DNA is made up of four letters-?A, C, G, T. During copying of the same letter in a row, errors easily occur: for example, 10A can be erroneously copied as 9A or 11A or 12A. If such an error occurs in a gene, the reading frame is destroyed, and the gene loses its function. It is extremely uncommon for bacteria to have long series of the same letter in their genes. The minibacteria that live in insects, on the other hand, can surprisingly have hundreds of such regions in their genes. In several cases these regions have accumulated genetic mutations and the genes have popped out of their reading frame.

"Theoretically speaking, these damaged genes should no longer be able to function", says Siv Andersson.

In the new study, the scientists have shown that despite their damage these genes become protein. The secret lies in the fact that new errors occur during copying of DNA to RNA, so a mixture of RNA molecules with 9A, 10A, 11A, and 12A is formed. Owing to the new errors, in some cases the original damage is repaired, and the gene pops back into its proper reading frame so that protein can be created.

"The result is a robust but extremely inefficient system. The major share of the copied material is useless and will be degraded. But thanks to the small proportion that turn out right as a result of the repeated copying errors, the bacteria can survive, thereby making it possible for the aphids and ants to survive", says Siv Andersson.

These findings are of value to experiments being carried out around the world in attempts to use engineering to create minibacteria using artificial genetic material.

Anneli Waara | alfa
Further information:
http://www.pnas.org/content/early/2008/09/23/0806554105.abstract
http://www.uu.se

Further reports about: Aphids DNA Error Genetic Genetic damage RNA ants copying genetic mutation minibacteria

More articles from Life Sciences:

nachricht Zap! Graphene is bad news for bacteria
23.05.2017 | Rice University

nachricht Discovery of an alga's 'dictionary of genes' could lead to advances in biofuels, medicine
23.05.2017 | University of California - Los Angeles

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

Im Focus: Bacteria harness the lotus effect to protect themselves

Biofilms: Researchers find the causes of water-repelling properties

Dental plaque and the viscous brown slime in drainpipes are two familiar examples of bacterial biofilms. Removing such bacterial depositions from surfaces is...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

Innovation 4.0: Shaping a humane fourth industrial revolution

17.05.2017 | Event News

 
Latest News

Scientists propose synestia, a new type of planetary object

23.05.2017 | Physics and Astronomy

Zap! Graphene is bad news for bacteria

23.05.2017 | Life Sciences

Medical gamma-ray camera is now palm-sized

23.05.2017 | Medical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>