Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Genetic clues hold key to schizophrenia treatment

23.03.2009
Researchers have taken a step forward in understanding the genetics of mental illnesses such as schizophrenia and bipolar disorder.

The study, conducted by the University of Edinburgh, found that a gene called DISC1 – known to play a role in the development of mental illness – may control the way some patients respond to psychiatric medication.

They also identified seven proteins that are important to the development of mental illness and hope the research could help to create new medicines that target these proteins.

The research was based on existing data from the Human Genome Project, a pioneering study, which mapped all the genes in human DNA.

The team analysed variations of the DISC1 gene and found that it affects a number of other genes that current medications are designed to target.

They believe that by identifying those patients in whom DISC1 may be a root cause of illness, they could find the patients for whom these drugs would be most effective.

The results are published in the Public Library of Science One.

Dr. William Hennah, who led the project at The University of Edinburgh and is now based at the Finland Institute for Molecular Medicine, said: "We know that disorders such as schizophrenia have a genetic element and that this specific gene, DISC1, is important to that process. This research helps us to understand exactly how it affects brain development and provides clues about how to solve problems when that process goes wrong."

Professor David Porteous, of the Institute of Genetics and Molecular Medicine at the University, said: "Schizophrenia is a devastating condition that affects around one in 100 people in the UK. By understanding more fully the genetic processes of mental health and illness we hope to identify ways in which medication might make a real difference to the lives of those affected by these conditions."

The team also hope that their technique of reviewing existing and publicly available genetic data could provide insight into a range of genetically-inherited disorders.

Anna Smyth | EurekAlert!
Further information:
http://www.ed.ac.uk

More articles from Life Sciences:

nachricht MicroRNA helps cancer evade immune system
19.09.2017 | Salk Institute

nachricht Ruby: Jacobs University scientists are collaborating in the development of a new type of chocolate
18.09.2017 | Jacobs University Bremen gGmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

Im Focus: Silencing bacteria

HZI researchers pave the way for new agents that render hospital pathogens mute

Pathogenic bacteria are becoming resistant to common antibiotics to an ever increasing degree. One of the most difficult germs is Pseudomonas aeruginosa, a...

Im Focus: Artificial Enzymes for Hydrogen Conversion

Scientists from the MPI for Chemical Energy Conversion report in the first issue of the new journal JOULE.

Cell Press has just released the first issue of Joule, a new journal dedicated to sustainable energy research. In this issue James Birrell, Olaf Rüdiger,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

New quantum phenomena in graphene superlattices

19.09.2017 | Physics and Astronomy

A simple additive to improve film quality

19.09.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>