Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Genetic clues hold key to schizophrenia treatment

23.03.2009
Researchers have taken a step forward in understanding the genetics of mental illnesses such as schizophrenia and bipolar disorder.

The study, conducted by the University of Edinburgh, found that a gene called DISC1 – known to play a role in the development of mental illness – may control the way some patients respond to psychiatric medication.

They also identified seven proteins that are important to the development of mental illness and hope the research could help to create new medicines that target these proteins.

The research was based on existing data from the Human Genome Project, a pioneering study, which mapped all the genes in human DNA.

The team analysed variations of the DISC1 gene and found that it affects a number of other genes that current medications are designed to target.

They believe that by identifying those patients in whom DISC1 may be a root cause of illness, they could find the patients for whom these drugs would be most effective.

The results are published in the Public Library of Science One.

Dr. William Hennah, who led the project at The University of Edinburgh and is now based at the Finland Institute for Molecular Medicine, said: "We know that disorders such as schizophrenia have a genetic element and that this specific gene, DISC1, is important to that process. This research helps us to understand exactly how it affects brain development and provides clues about how to solve problems when that process goes wrong."

Professor David Porteous, of the Institute of Genetics and Molecular Medicine at the University, said: "Schizophrenia is a devastating condition that affects around one in 100 people in the UK. By understanding more fully the genetic processes of mental health and illness we hope to identify ways in which medication might make a real difference to the lives of those affected by these conditions."

The team also hope that their technique of reviewing existing and publicly available genetic data could provide insight into a range of genetically-inherited disorders.

Anna Smyth | EurekAlert!
Further information:
http://www.ed.ac.uk

More articles from Life Sciences:

nachricht A novel socio-ecological approach helps identifying suitable wolf habitats
17.02.2017 | Universität Zürich

nachricht New, ultra-flexible probes form reliable, scar-free integration with the brain
16.02.2017 | University of Texas at Austin

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Biocompatible 3-D tracking system has potential to improve robot-assisted surgery

17.02.2017 | Medical Engineering

Real-time MRI analysis powered by supercomputers

17.02.2017 | Medical Engineering

Antibiotic effective against drug-resistant bacteria in pediatric skin infections

17.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>