Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


How genes hide their function

Researchers at the RIKEN Plant Science Center have illuminated mechanisms underlying the genetic robustness of metabolic effects in the model plant Arabidopsis thaliana. Their findings reveal a key balance between the roles played by duplicate genes and metabolic network connectivity in functional compensation.

Researchers at the RIKEN Plant Science Center have illuminated mechanisms underlying the genetic robustness of metabolic effects in the model plant Arabidopsis thaliana. Their findings, reported in Molecular Biology and Evolution, reveal a key balance between the roles played by duplicate genes and metabolic network connectivity in functional compensation.

Despite many decades of research, the relationship between genes and their phenotypic effects remains poorly understood. The standard approach of knocking out individual genes to assess their role runs into the problem of genetic robustness: cells compensate for gene loss by reproducing the gene’s function via other means, concealing its actual phenotypic effect.

Narrowing this effect to metabolic products, two functional compensation mechanisms enable cells to do this: gene duplication and alternate metabolic pathways. To explore the relative contribution of each, the researchers analyzed 35 metabolic products – 17 primary metabolites and 18 secondary metabolites – from 1976 genes in mutants of the model plant Arabidopsis thaliana. Using liquid chromatography-mass spectrometry (LC-MS), an analytical chemistry technique, they compared what happens to production of these metabolites when genes with and without duplicates are knocked out.

Results reveal that only duplicate genes with very high similarity play a significant role in functional compensation, mainly in the production of secondary metabolites and in functions associated with multiple metabolic products. Alternative pathways, in contrast, were found to compensate for the production of primary metabolites, which are more highly-connected in metabolic networks.

Together, the results uncover a complementary relationship between compensation mechanisms in A. thaliana, indicating that duplicate genes play an important role only when the number of alternative pathways is low. By exposing the mechanisms separating genes from their phenotypic effects, the findings thus shed valuable new light on the gene-phenotype relationship, laying the groundwork for new theoretical models in systems biology.

For more information, please contact:

Dr. Kousuke Hanada
Gene Discovery Research Group
RIKEN Plant Science Center
Tel: +81-(0)45-503-9570 / Fax: +81-(0)45-503-9580
Ms. Tomoko Ikawa (PI officer)
Global Relations Office
Tel: +81-(0)48-462-1225 / Fax: +81-(0)48-463-3687
Kousuke Hanada, Yuji Sawada, Takashi Kuromori, Klausnitzer Romy, Kazuki Saito, Tetsuro Toyoda, Kazuo Shinozaki, Wen-Hsiung Li and Masami Yokota Hirai. Functional compensation of primary and secondary metabolites by duplicate genes in Arabidopsis thaliana. Mol. Biol. Evol. (2010). DOI: 10.1093/molbev/msq204

About the RIKEN Plant Science Center

With rapid industrialization and a world population set to top 9 billion within the next 30 years, the need to increase our food production capacity is more urgent today than it ever has been before. Avoiding a global crisis demands rapid advances in plant science research to boost crop yields and ensure a reliable supply of food, energy and plant-based materials.

The RIKEN Plant Science Center (PSC), located at the RIKEN Yokohama Research Institute in Yokohama City, Japan, is at the forefront of research efforts to uncover mechanisms underlying plant metabolism, morphology and development, and apply these findings to improving plant production. With laboratories ranging in subject area from metabolomics, to functional genomics, to plant regulation and productivity, to plant evolution and adaptation, the PSC's broad scope grants it a unique position in the network of modern plant science research. In cooperation with universities, research institutes and industry, the PSC is working to ensure a stable supply of food, materials, and energy to support a growing world population and its pressing health and environmental needs.

Associated files available for download
View/download the file '2010_08_18_HANADA_GENE_DUPLICATION final2.doc.
Journal information
Molecular Biology and Evolution

gro-pr | Research asia research news
Further information:

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>