Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Genes that let creepy-crawlies survive a deep freeze

21.07.2009
Arctic springtails (Megaphorura arctica) survive freezing temperatures by dehydrating themselves before the coldest weather sets in. Researchers writing in the open access journal BMC Genomics have identified a suite of genes involved in controlling this extreme survival mechanism.

Melody Clark led a team of researchers from the British Antarctic Survey and the University of Novi-Sad, Serbia, who studied the arthropods. She said, "This is the first in-depth molecular study on the underlying cold survival mechanisms in this species. Such information is not only of interest to ecologists, but also to the medical field of cryobiology".

Arctic springtails desiccate themselves in order to survive the worst of polar ice, snow and low temperatures, which can easily reach -14°C. They shrivel up into small husks until, when conditions become more favorable, they rehydrate themselves and re-emerge. This is the first study to identify the genetic basis for this physiological process. To generate the cold-induced gene expression profile of springtails, Clark and her colleagues compared gene expression in groups of the animals exposed to different environmental conditions. They showed that genes involved in a number of significant cellular processes, namely the production and mobilisation of a natural anti-freeze called trehalose, protection of cellular systems via small heat shock proteins and tissue/cellular remodeling, were activated during the cold-induced dehydration process. Genes that dominated when the animals were allowed to recover at a higher temperature, were those involved in energy production, leading to protein production and cell division.

Speaking about possible implications of this research, Clark said, "This is part of a larger European project called Sleeping Beauty, which is looking at how different animals survive desiccation. Understanding how animals survive harsh cold environments will hopefully provide novel solutions for medical research and preserving tissues for transplant operations".

1. Surviving the cold: molecular analyses of insect cryoprotective dehydration in the Arctic springtail Megaphorura arctica (Tullberg).
Melody S Clark, Michael A.S Thorne, Jelena Purac, Gavin Burns, Guy Hillyard, Zeljko D Popovic, Gordana Grubor-Lajsic and M Roger Worland

BMC Genomics (in press)

2. BMC Genomics is an open access journal publishing original peer-reviewed research articles in all aspects of genome-scale analysis, functional genomics, and proteomics. BMC Genomics (ISSN 1471-2164) is indexed/tracked/covered by PubMed, MEDLINE, BIOSIS, CAS, Scopus, EMBASE, Zoological Record, Thomson Reuters (ISI) and Google Scholar.

3. The Cambridge-based British Antarctic Survey (BAS) is a world leader in research into global environmental issues. With an annual budget of around £45 million, five Antarctic Research Stations, two Royal Research Ships and five aircraft, BAS undertakes an interdisciplinary research programme and plays an active and influential role in Antarctic affairs. BAS has joint research projects with over 40 UK universities and has more than 120 national and international collaborations. It is a component of the Natural Environment Research Council. More information about the work of the Survey can be found at: www.antarctica.ac.uk

4. BioMed Central (http://www.biomedcentral.com/) is an STM (Science, Technology and Medicine) publisher which has pioneered the open access publishing model. All peer-reviewed research articles published by BioMed Central are made immediately and freely accessible online, and are licensed to allow redistribution and reuse. BioMed Central is part of Springer Science+Business Media, a leading global publisher in the STM sector.

Graeme Baldwin | EurekAlert!
Further information:
http://www.biomedcentral.com
http://www.antarctica.ac.uk

More articles from Life Sciences:

nachricht Researchers uncover protein-based “cancer signature”
05.12.2016 | Universität Basel

nachricht The Nagoya Protocol Creates Disadvantages for Many Countries when Applied to Microorganisms
05.12.2016 | Leibniz-Institut DSMZ-Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

IHP presents the fastest silicon-based transistor in the world

05.12.2016 | Power and Electrical Engineering

InLight study: insights into chemical processes using light

05.12.2016 | Materials Sciences

High-precision magnetic field sensing

05.12.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>