Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Genes from the 18th century help patients of today

Mainz University Paleogenetics Group participates in study of acromegaly attributable to genetic mutation / Publication in renowned New England Journal of Medicine

An international research team, spearheaded by scientists from the London School of Medicine and Dentistry, has identified the genetic mutation responsible for a disease known as "gigantism" or acromegaly. The results of the study – conducted, among others, by the Paleogenetics Group of the Institute of Anthropology at Johannes Gutenberg University Mainz (JGU), Germany – were recently published in the renowned New England Journal of Medicine. It is hoped that these will help in the treatment of patients suffering from acromegaly.

Gigantism is known to be caused by a tumor of the pituitary gland, a gland located at the base of the brain from where it releases hormones that regulate several functions of the body – one being growth. Pituitary tumors can cause tissues to grow abnormally resulting in certain changes in facial appearance, enlarged hands and feet, headache and sweating – eyesight too can be affected; this condition is called acromegaly.

Márta Korbonits, Professor of Endocrinology and Metabolism at Barts and the London School of Medicine and Dentistry, initially looked at the aryl hydrocarbon receptor interacting protein (AIP) gene. It has been known since 2006 that defects to this gene are associated with a predisposition to development of pituitary tumors, and Professor Korbonits was able to identify a specific genetic mutation in Irish patients with a family history of acromegaly. Leading international paleogenetics experts Professor Dr Joachim Burger and Martina Unterländer of the Institute of Anthropology at Johannes Gutenberg University Mainz, Germany subsequently extracted and analyzed the DNA from the skeleton of an 18th-century acromegaly patient preserved in the Hunterian Museum in London. The research team discovered exactly the same mutation as the one found in living patients. Further analyses of other DNA segments located in the vicinity of this gene led to the conclusion that the Hunterian Museum's so-called "Irish Giant" had inherited the mutation from a common ancestor that he shared with a number of living Irish families who are suffering from this hereditary disorder today. The subsequent complex biostatistical calculations showed that the original mutation developed around 1,500 years ago and has been passed on from generation to generation ever since. It is estimated that around 200 to 300 people still carry the mutation today.

"The ancient DNA from the skeleton has enabled us to confirm the hypothesis that there is indeed a link between the mutation and this disease, a disorder which in the past so often resulted in tragedy," explains Professor Joachim Burger from Mainz University. He continues: "The biomathematical calculations have even provided us with a highly accurate insight into the history of this illness." Márta Korbonits, head of the study, adds: " The most important clinical aspect of our study is that it is now possible to trace down carriers of this gene in time and treat patients before they grow to be a giant." Professor Patrick Morrison, co-author of the study, concludes: "The benefits to patients locally are that we now have a genetic blood test that families at risk of this condition can choose to have, which allows early detection and prevention of excessive growth."

Petra Giegerich | idw
Further information:

More articles from Life Sciences:

nachricht Don't Give the Slightest Chance to Toxic Elements in Medicinal Products
23.03.2018 | Physikalisch-Technische Bundesanstalt (PTB)

nachricht North and South Cooperation to Combat Tuberculosis
22.03.2018 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Space observation with radar to secure Germany's space infrastructure

Satellites in near-Earth orbit are at risk due to the steady increase in space debris. But their mission in the areas of telecommunications, navigation or weather forecasts is essential for society. Fraunhofer FHR therefore develops radar-based systems which allow the detection, tracking and cataloging of even the smallest particles of debris. Satellite operators who have access to our data are in a better position to plan evasive maneuvers and prevent destructive collisions. From April, 25-29 2018, Fraunhofer FHR and its partners will exhibit the complementary radar systems TIRA and GESTRA as well as the latest radar techniques for space observation across three stands at the ILA Berlin.

The "traffic situation" in space is very tense: the Earth is currently being orbited not only by countless satellites but also by a large volume of space...

Im Focus: Researchers Discover New Anti-Cancer Protein

An international team of researchers has discovered a new anti-cancer protein. The protein, called LHPP, prevents the uncontrolled proliferation of cancer cells in the liver. The researchers led by Prof. Michael N. Hall from the Biozentrum, University of Basel, report in “Nature” that LHPP can also serve as a biomarker for the diagnosis and prognosis of liver cancer.

The incidence of liver cancer, also known as hepatocellular carcinoma, is steadily increasing. In the last twenty years, the number of cases has almost doubled...

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

New solar solutions for sustainable buildings and cities

23.03.2018 | Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

Latest News

For graphite pellets, just add elbow grease

23.03.2018 | Materials Sciences

Unique communication strategy discovered in stem cell pathway controlling plant growth

23.03.2018 | Agricultural and Forestry Science

Sharpening the X-ray view of the nanocosm

23.03.2018 | Physics and Astronomy

Science & Research
Overview of more VideoLinks >>>