Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Gene regulation: Can we stomach it?

Max Planck scientists succeed with a novel technique in the fight against the cause of peptic ulcer disease and gastric cancer

A breakthrough in decoding gene regulation of Helicobacter pylori has been made by an international research team led by Jörg Vogel of the Max Planck Institute for Infection Biology in Berlin. Using a newly developed sequencing technique, the re-searchers discovered 60 small ribonucleic acids (sRNAs) - tiny RNA-particles which can regulate genes - in the genome of this human pathogen. These findings could facilitate the development of new therapeutic strategies against this wide-spread pathogen. (Nature, February 17th 2010)

Helicobacter pylori (blue) with cells of the intestinal epithelium (orange). Image: Brinkmann

About 50 percent of the world’s population carry Helicobacter pylori (H. pylori) in their gastrointestinal tract - 30 percent of the German population are infected. Besides cancer, these bacteria are linked to other chronic diseases such as cardiovascular disease. The decoding of the H. pylori genome in 1997 revealed this pathogen to possess surprisingly few genes for transcriptional regulators, sparking a number of crucial questions: Where do the genes of Helicobacter start, and how are these switched on and off? Have all genes been discovered already?

Researchers have been searching for new types of gene regulators in this pathogen, especially for sRNAs. It has recently been realized that these tiny RNA particles are far more abundant in all organisms than previously thought. They can regulate genes by binding to sequences of the genetic information, thereby inhibiting the production of a protein. Yet strangely enough, sRNAs seemed to be lacking in Helicobacter. Jörg Vogel, leader of the RNA Biology Group at the Max Planck Institute for Infection Biology, and his team have finally tracked down a number of sRNAs in the pathogen. To enable their discovery, they modified a technique called "deep sequencing", to decipher millions of RNA-sequences newly produced in a cell. The surprised scientists found 60 sRNAs: "To date, it was believed that this organism completely lacks sRNAs", says Vogel.

A new model for gene regulation?

"We found as many sRNAs in Helicobacter as in widespread intestinal bacteria like Escherichia coli or Salmonella", explains Vogel. But a very important protein required for the regulation of gene expression by sRNAs is missing in Helicobacter pylori. The stomach pathogen possibly uses different signalling pathways, which makes it a possible candidate as a model in RNA-research. "We hope to get completely new insights into gene regulation", says Vogel.

Thanks to the novel technique, the researchers could also define the starting point of every gene in Helicobacter. "It enables us to interpret the genome in a completely new way", explains Vogel. This success, achieved in collaboration with scientists from Leipzig (Germany) and Bordeaux (France), could facilitate the development of a vaccine against the pathogen. Vogel’s team will now apply the new sequencing technique to other food-borne pathogens. Interesting candidates are Campylobacter jejuni, which besides Salmonella is the most frequent cause for infectious diarrhoea.

Original work:

Cynthia M. Sharma, Steve Hoffmann, Fabien Darfeuille, Jérémy Reignier, Sven Findeiß, Alexandra Sittka, Sandrine Chabas, Kristin Reiche, Jörg Hackermüller, Richard Reinhardt, Peter F. Stadler & Jörg Vogel
The primary transcriptome of the major human pathogen Helicobacter pylori
Nature, Februar 17th 2010 online publication (doi: 10.1038/nature08756)
Prof. Jörg Vogel
Max Planck Institute for Infection Biology, Berlin
Tel.: +49 (0)30 / 28460-265 / +49 (0)160 / 700-6532
Gesa Krey
Max Planck Institute for Infection Biology, Berlin
Tel.: +49 (0)30 / 28460-206

Barbara Abrell | Max Planck Society
Further information:

More articles from Life Sciences:

nachricht First time-lapse footage of cell activity during limb regeneration
25.10.2016 | eLife

nachricht Phenotype at the push of a button
25.10.2016 | Institut für Pflanzenbiochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

3-D-printed magnets

26.10.2016 | Power and Electrical Engineering

Advanced analysis of brain structure shape may track progression to Alzheimer's disease

26.10.2016 | Health and Medicine

3-D-printed structures shrink when heated

26.10.2016 | Materials Sciences

More VideoLinks >>>