Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Gene mutations increase risk for aggressive prostate cancer

02.02.2009
Genetic testing could shed light on tumor prognosis

Men who develop prostate cancer face an increased risk of having an aggressive tumor if they carry a so-called breast cancer gene mutation, scientists from the Albert Einstein College of Medicine of Yeshiva University report in today's issue of Clinical Cancer Research. The findings could help to guide prostate-cancer patients and their physicians in choosing treatment options.

The study, involving 979 men with prostate cancer and 1251 men without the disease, looked at whether participants carried mutations for either of two genes, BRCA1 and BRCA2. Women carrying mutations in either gene face an increased risk of developing breast cancer, ovarian cancer, or both.

All the people enrolled in the Einstein study were of Ashkenazi Jewish descent. The study focused on them because they are five times likelier than people in the general population to carry a mutation of any kind in the BRCA1 or BRCA2 genes. The researchers looked for the presence of three particular mutations–two in BRCA1 and one in BRCA2. Scientists believe that genetic discoveries among the Ashkenazi can benefit society as a whole in terms of preventing and treating major diseases.

Having any of the three mutations did not increase a man's risk of developing prostate cancer, the study found. But for those men who did develop prostate cancer, two of the mutations–BRCA1-185delAG and the mutated BRCA2 gene–increased the risk that tumors would be aggressive or high-grade, as defined by a Gleason score of 7 or above. The Gleason score, based on the microscopic appearance of prostate tissue removed during a biopsy or surgery, assesses the aggressiveness of a prostate tumor on a scale from 2 (least aggressive) to 10 (most aggressive).

Specifically, prostate cancer patients with high-grade, aggressive tumors (Gleason scores of 7 or above) were 3.2 times more likely to carry the BRCA2 gene mutation than were men in the control group. Carriers of the BRCA1-185delAG mutation were also at increased risk of having an aggressive prostate cancer.

Previous investigations into a possible link between prostate-cancer risk and the BRCA1 and BRCA2 genes have yielded conflicting results–perhaps because they involved small numbers of subjects and lacked well-matched control groups. "Our large study shows conclusively that prostate cancer patients with either the BRCA2 gene mutation or the BRCA1-185delAG mutation are more susceptible to aggressive cancers than people without that mutation," says Robert Burk, M.D., professor of pediatrics (genetics) at Einstein and senior author of the study.

Routine genetic testing for BRCA mutations–done by analyzing blood samples or cells swabbed from the inside of one's cheeks–wouldn't be justified for most men, says Dr. Burk: the prevalence of the mutations in the general population is very low; and men with high Gleason scores already know that their prostate cancer is aggressive. But, notes Dr. Burk, "our findings might have practical implications for some men diagnosed with early-stage (low Gleason score) prostate cancers–particularly Ashkenazi Jewish men, who are much more likely to have these mutations."

"One of the biggest problems with early-stage prostate cancer is being able to distinguish between tumors with the potential to become aggressive and those that may persist for many years without enlarging or spreading," notes Dr. Burk. For that reason, he says, Ashkenazi men diagnosed with early-stage prostate cancer might want to consider getting tested for the BRCA2 and BRCA1-185delAG mutations.

Knowing they have the mutation—and that their tumor may become aggressive—may influence treatment options that patients pursue. For example, a prostate cancer patient who has the BRCA2 mutation might vote against 'watchful waiting'—in which the growth of the cancer is monitored and treatment is held in abeyance—and instead opt for surgery or radiation treatments with or without hormone blockade therapy.

For early-stage prostate cancer patients in the general population, knowing they carry the BRCA1 or BRCA2 mutation would also be useful, says Dr. Burk. But these mutations are so rare in the general population—a prevalence of far less than one percent—that testing is unlikely to reveal their presence.

Michael Heller | EurekAlert!
Further information:
http://www.aecom.yu.edu

More articles from Life Sciences:

nachricht Scientists unlock ability to generate new sensory hair cells
22.02.2017 | Brigham and Women's Hospital

nachricht New insights into the information processing of motor neurons
22.02.2017 | Max Planck Florida Institute for Neuroscience

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Microhotplates for a smart gas sensor

22.02.2017 | Power and Electrical Engineering

Scientists unlock ability to generate new sensory hair cells

22.02.2017 | Life Sciences

Prediction: More gas-giants will be found orbiting Sun-like stars

22.02.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>