Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Gene Mutation Discovered for Hereditary Neuroendocrine Tumor

27.07.2009
University of Utah researchers and their colleagues have identified the gene that is mutated in a hereditary form of a rare neuroendocrine tumor called paraganglioma (PGL).

The gene, called hSDH5, is required for activation of an enzyme complex that plays a critical role in the chemical reactions that take place within cells to convert biochemical energy into usable energy. This study will be published in the journal Science, to be released online in Science Express on July 23, 2009.

Paragangliomas are rare, generally benign tumors that arise from cells called glomus cells, which are located along blood vessels and play a role in regulating blood pressure and blood flow. Approximately 25 percent of paragangliomas are hereditary. Of the four familial PGL syndromes, three forms have previously been associated with mutations in genes of the succinate dehydrogenase (SDH) complex, an enzyme complex involved in the ability of cells to extract energy from nutrients.

Studies in Yeast

“Defects in mitochondria, the power sources of the cell, have been implicated in a variety of human disorders, including cancer,” says Jared Rutter, PhD, associate professor of biochemistry at the University of Utah School of Medicine, investigator at the University’s Huntsman Cancer Institute, and lead author of the study. “Because it is incredibly difficult to perform in-depth studies in humans, we decided to use a much simpler model system, the yeast Saccharomyces cerevisiae, in order to study mitochondrial functions before going back to humans and determining whether what we learned in yeast was also relevant to humans. Following this strategy, we first characterized a mitochondrial protein called Sdh5 in yeast and then moved on to study its potential role in human disease.”

Sdh5 is a mitochondrial protein that is highly conserved, meaning that it has remained largely unchanged throughout the course of evolution and likely performs similar essential cellular functions in both yeast and humans. Rutter and his colleagues discovered that, in yeast, the Sdh5 protein is needed for the SDH complex to function normally. They also found that Sdh5 is required for activation of another protein called Sdh1 that is also part of the SDH complex.

Studies in Humans

“The amino acid sequence of yeast Sdh5 is 44 percent identical to its human counterpart, which we’ve named hSDH5. This gave us some confidence that the Sdh5 functions we discovered in yeast would also be carried out by human hSdh5,” explains Rutter. “Previous genetic studies have shown that the hereditary paragangliomas PGL1, PGL3, and PGL4 are associated with mutations causing loss of SDH activity. Although the gene for PGL2 had not been identified, we knew that it was located on the same chromosome as the hSDH5 gene.”

Rutter and his colleagues sequenced the hSDH5 gene in three individuals with PGL2 from a previously described Dutch lineage. They identified a single DNA nucleotide change which resulted in a mutation in the most conserved region of the protein. Of the 45 individuals within the affected lineage who inherited the mutation, 33 have developed PGL2, providing strong evidence that hSDH5 is the PGL2 gene. The seven individuals who inherited the mutation from their mothers are unaffected, suggesting an inheritance pattern that is specific to the parent of origin.

The researchers also discovered that, as in yeast, the inactivation of hSDH5 dramatically impaired the activity of the SDH complex, which was decreased by approximately 95% in tumors from three patients with PGL2.

Implications on Genetic Testing

The identification of hSDH5 as the PGL2 gene has potential clinical implications for patients with familial PGL syndromes. Genetic testing is suggested for the management of PGL, even when it does not seem to be inherited, in order to identify individuals who are at risk for developing tumors.

“Individuals with familial PGLs tend to be affected at a younger age with tumors at multiple sites,” says Rutter. “Including hSDH5 in DNA screening will allow for more comprehensive genetic testing, as well as earlier detection and treatment.”

Huaixiang Hao, a graduate student in Rutter’s laboratory, conducted the majority of the experiments in this study. Other study contributors include Oleh Khalimonchuk, Ph.D. and Dennis Winge, Ph.D. in the department of medicine at the University of Utah and Joshua Schiffman, M.D. and Brandon Bentz, M.D. from Huntsman Cancer Institute. Noah Dephoure, Ph.D. and Steven Gygi, Ph.D. from Harvard Medical School, as well as a number of Dutch scientists, were also involved in the study.

Jared Rutter | Newswise Science News
Further information:
http://www.utah.edu

More articles from Life Sciences:

nachricht Multi-institutional collaboration uncovers how molecular machines assemble
02.12.2016 | Salk Institute

nachricht Fertilized egg cells trigger and monitor loss of sperm’s epigenetic memory
02.12.2016 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>