Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Gene Mutation Discovered for Hereditary Neuroendocrine Tumor

27.07.2009
University of Utah researchers and their colleagues have identified the gene that is mutated in a hereditary form of a rare neuroendocrine tumor called paraganglioma (PGL).

The gene, called hSDH5, is required for activation of an enzyme complex that plays a critical role in the chemical reactions that take place within cells to convert biochemical energy into usable energy. This study will be published in the journal Science, to be released online in Science Express on July 23, 2009.

Paragangliomas are rare, generally benign tumors that arise from cells called glomus cells, which are located along blood vessels and play a role in regulating blood pressure and blood flow. Approximately 25 percent of paragangliomas are hereditary. Of the four familial PGL syndromes, three forms have previously been associated with mutations in genes of the succinate dehydrogenase (SDH) complex, an enzyme complex involved in the ability of cells to extract energy from nutrients.

Studies in Yeast

“Defects in mitochondria, the power sources of the cell, have been implicated in a variety of human disorders, including cancer,” says Jared Rutter, PhD, associate professor of biochemistry at the University of Utah School of Medicine, investigator at the University’s Huntsman Cancer Institute, and lead author of the study. “Because it is incredibly difficult to perform in-depth studies in humans, we decided to use a much simpler model system, the yeast Saccharomyces cerevisiae, in order to study mitochondrial functions before going back to humans and determining whether what we learned in yeast was also relevant to humans. Following this strategy, we first characterized a mitochondrial protein called Sdh5 in yeast and then moved on to study its potential role in human disease.”

Sdh5 is a mitochondrial protein that is highly conserved, meaning that it has remained largely unchanged throughout the course of evolution and likely performs similar essential cellular functions in both yeast and humans. Rutter and his colleagues discovered that, in yeast, the Sdh5 protein is needed for the SDH complex to function normally. They also found that Sdh5 is required for activation of another protein called Sdh1 that is also part of the SDH complex.

Studies in Humans

“The amino acid sequence of yeast Sdh5 is 44 percent identical to its human counterpart, which we’ve named hSDH5. This gave us some confidence that the Sdh5 functions we discovered in yeast would also be carried out by human hSdh5,” explains Rutter. “Previous genetic studies have shown that the hereditary paragangliomas PGL1, PGL3, and PGL4 are associated with mutations causing loss of SDH activity. Although the gene for PGL2 had not been identified, we knew that it was located on the same chromosome as the hSDH5 gene.”

Rutter and his colleagues sequenced the hSDH5 gene in three individuals with PGL2 from a previously described Dutch lineage. They identified a single DNA nucleotide change which resulted in a mutation in the most conserved region of the protein. Of the 45 individuals within the affected lineage who inherited the mutation, 33 have developed PGL2, providing strong evidence that hSDH5 is the PGL2 gene. The seven individuals who inherited the mutation from their mothers are unaffected, suggesting an inheritance pattern that is specific to the parent of origin.

The researchers also discovered that, as in yeast, the inactivation of hSDH5 dramatically impaired the activity of the SDH complex, which was decreased by approximately 95% in tumors from three patients with PGL2.

Implications on Genetic Testing

The identification of hSDH5 as the PGL2 gene has potential clinical implications for patients with familial PGL syndromes. Genetic testing is suggested for the management of PGL, even when it does not seem to be inherited, in order to identify individuals who are at risk for developing tumors.

“Individuals with familial PGLs tend to be affected at a younger age with tumors at multiple sites,” says Rutter. “Including hSDH5 in DNA screening will allow for more comprehensive genetic testing, as well as earlier detection and treatment.”

Huaixiang Hao, a graduate student in Rutter’s laboratory, conducted the majority of the experiments in this study. Other study contributors include Oleh Khalimonchuk, Ph.D. and Dennis Winge, Ph.D. in the department of medicine at the University of Utah and Joshua Schiffman, M.D. and Brandon Bentz, M.D. from Huntsman Cancer Institute. Noah Dephoure, Ph.D. and Steven Gygi, Ph.D. from Harvard Medical School, as well as a number of Dutch scientists, were also involved in the study.

Jared Rutter | Newswise Science News
Further information:
http://www.utah.edu

More articles from Life Sciences:

nachricht Discovery of a Key Regulatory Gene in Cardiac Valve Formation
24.05.2017 | Universität Basel

nachricht Carcinogenic soot particles from GDI engines
24.05.2017 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

Innovation 4.0: Shaping a humane fourth industrial revolution

17.05.2017 | Event News

 
Latest News

A CLOUD of possibilities: Finding new therapies by combining drugs

24.05.2017 | Life Sciences

Carcinogenic soot particles from GDI engines

24.05.2017 | Life Sciences

A quantum walk of photons

24.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>