Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


GARP makes the difference

Researchers develop key brake for immune cells in petri dish -- hope for easier organ transplantation?

Scientists from the Helmholtz Center for Infection Research in Braunschweig, Germany and the Medical School Hannover, Germany have succeeded in treating immune cells in a way that enables them to inhibit unwanted immune reactions such as organ rejection. Their results have now been published in the current issue of the scientific journal Journal of Cellular and Molecular Medicine.

The immune system keeps us healthy: day and night it protects us against invading and harmful pathogens. But this fulltime surveillance can also turn into a problem, for example after an organ transplant. The immune system recognizes the new organ as "foreign" and starts fighting it. In the end, the life-saving transplant will be rejected. Until now, only special drugs have managed to keep the immune system silent and thus inhibit organ rejection.

Theoretically, these drugs are not necessary because the immune system has its own unique "peace makers": regulatory T cells (Tregs), a special group of helper T cells, an important cell type of the immune system. Tregs inhibit immune reactions and are thus of special medical interest. Until now, distinguishing between Tregs and helper T cells has represented a problem for scientists. Now, in co-operation with the Medical School Hannover, researchers from the Helmholtz Centre for Infection Research in Braunschweig have identified a molecular factor that plays an essential role in Treg function. This protein constitutes the key difference between Tregs and helper T cells. Furthermore, the scientists have also generated Tregs from helper T cells that permanently maintained their characteristics.

The key to Tregs is called "GARP". Michael Probst-Kepper is a researcher in a junior research group that is financed by the German Volkswagen foundation, he works at both HZI and MHH. He has now deciphered the special role of the GARP protein. Until now, scientists had only little distinguishing features to aid them in separating T cells that trigger a transplant rejection from those that inhibit such a reaction: they mainly looked at molecular features that both cell types have – the one more, the other less. "It's like looking at two cars that appear to be the same. Except that one is capable of driving while the other doesn't drive anymore. But you cannot see that from the outside," says Michael Probst-Kepper. He deciphered the role of GARP: this new-found factor only exists in Tregs and initiates a complex network of various molecules. "If you don't want a car to drive anymore, you pull the key out and cut the petrol pipe. GARP does the same: it prevents Tregs from stepping on the gas."

The scientist artificially inserted GARP into those T cells that start an immune reaction against transplants. The result was a substantial advance for medicine: the transplant-rejecting T cells developed permanently into Tregs – those cells that inhibit the activation of aggressive T cells and thus prevent organ rejection. Furthermore, the researchers also furnished the counter evidence: Michael Probst-Kepper muted the GARP gene in Tregs. As a result, the Tregs lost their "peace making" characteristics. "The cells could start driving again," he says. "With this study we were able to show the complexity of the Treg system for the first time, developing a powerful tool for medicine to develop new therapies and drugs."

Article: GARP: a key receptor controlling FOXP3 in human regulatory T cells. Probst-Kepper M, Geffers R, Kröger A, Viegas N, Erck C, Hecht HJ, Luensdorf H, Roubin R, Moharregh-Khiabani D, Wagner K, Ocklenburg F, Jeron A, Garritsen H, Arstila TP, Kekaelaeinen E, Balling R, Hauser H, Buer J, Weiss S. J Cell Mol Med. 2009 May 13. [Epub ahead of print]

Dr. Bastian Dornbach | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht First time-lapse footage of cell activity during limb regeneration
25.10.2016 | eLife

nachricht Phenotype at the push of a button
25.10.2016 | Institut für Pflanzenbiochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Ice shelf vibrations cause unusual waves in Antarctic atmosphere

25.10.2016 | Earth Sciences

Fluorescent holography: Upending the world of biological imaging

25.10.2016 | Power and Electrical Engineering

Etching Microstructures with Lasers

25.10.2016 | Process Engineering

More VideoLinks >>>