Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Foggy perception slows us down

30.10.2012
Max Planck scientists show that, contrarily to what was previously believed, speed is overestimated in fog

Fog is an atmospheric phenomenon that afflicts millions of drivers every day, impairing visibility and increasing the risk of an accident. The ways people respond to conditions of reduced visibility is a central topic in vision research. It has been shown that people tend to underestimate speeds when visibility is reduced equally at all distances, as for example, when driving with a uniformly fogged windshield.


The visualization facility at the Max Planck Institute for Biological Cybernetics in which the research was conducted. The screen covers 230° horizontal and 125° vertical field of view, filling the entire human visual field to provide full immersion in the virtual environment.

Picture: Jan Soumann / Max Planck Institute for Biological Cybernetics Tübingen


The visualization facility at the Max Planck Institute for Biological Cybernetics in which the research was conducted (user perspective): The screen covers 230° horizontal and 125° vertical field of view, filling the entire human visual field to provide full immersion in the virtual environment.

Picture: Jan Soumann / Max Planck Institute for Biological Cybernetics Tübingen

But what happens when the visibility decreases as you look further into the distance, as happens when driving in true fog? New research by Paolo Pretto at the Max Planck Institute for Biological Cybernetics in Tübingen, Germany, published in eLife, reveals that people tend to overestimate their speed when driving in fog-like conditions and therefore naturally tend to drive at a slower pace.

Poor visibility conditions affect millions of drivers around the world. Thousands of them die each year in a car accident. Excessive speed constitutes a major causal factor for these car accidents. For the first time Paolo Pretto and his fellow scientists, in the department for Human Perception, Cognition and Action of Heinrich Bülthoff at the Max Planck Institute for Biological Cybernetics in Tübingen, Germany, showed how fog biases speed perception and revealed the perceptual mechanisms underlying this bias, providing important insights into the human visual system.

In particular, they showed that contrarily to what was previously believed, speed is overestimated in fog, because visibility is poorer in the central than in the peripheral area of the visual field. The researchers also show that the behavioral consequence of this speed overestimation is a natural tendency to drive at a slower pace.

Using a new approach Paolo Pretto and his colleagues performed a series of experiments involving experienced drivers and high-quality virtual reality simulations. “We have shown that speed can also be overestimated at a low contrast of the surrounding scenery when driving a car”, explains the psychologist. “This occurs notably when contrast is not reduced uniformly for all objects of the visual scene, but proportionally to their distance from the viewer, as is the case in fog.”

In one experiment drivers were presented with two different driving scenes and asked to guess which scene was moving faster. In the reference scene the car was driving at a fixed speed through a landscape under conditions of clear visibility. In the test scene it was moving through the same landscape, again at a fixed speed, but with the visibility reduced in various ways.

The experiments showed that drivers overestimated speeds in fog-like conditions, and underestimated them when the reduction in visibility did not depend on distance. Further experiments confirmed that these perceptions had an influence on driving behavior: drivers recorded an average speed of 85 kilometers per hour when the visibility was good. This dropped to 70 kilometers per hour in severe fog. However, when visibility was reduced equally at all distances like in a fogged windshield instead of fogged surroundings, the average driving speed increased to 100 kilometers per hour.

Based on previous work, the scientists developed the theory that the perception of speed is influenced by the relative speeds of the visible regions in the scene. When looking directly into the fog, visibility is strongly reduced in the distant regions, where the relative motion is slow. Yet, it is preserved in the near regions, where the motion is fast. This visibility gradient would lead to speed overestimation. To test this theory, they repeated their experiments with new drivers under three different conditions: good visibility, fog, and an artificial situation called “anti-fog” in which visibility is poor in the near regions and improves as you look further into the distance. As predicted, the estimated speed was lower in anti-fog than in clear visibility and fog. Conversely, the driving speed was 100 kilometers per hour in anti-fog, compared with 70 kilometers per hour in good visibility and 50 kilometers per hour in fog.

Overall the results show that the perception of speed is influenced by spatial variations in visibility, and they strongly suggest that this is due to the relative speed contrast between the visible and covert areas within the scene. Therefore, drivers should better listen to their visual system when it prompts them to decelerate in foggy weather.

More Information about Paolo Pretto and his work:
http://www.kyb.tuebingen.mpg.de/research/dep/bu/motion-perception-in-vehicle-simulation.html

eLife is a joint initiative of the Howard Hughes Medical Institute, the Max Planck Society, and the Wellcome Trust. Along with a growing number of public and private research funders worldwide, these three organizations recognize that the communication of research results is as fundamental a component of the research process as the experiments themselves.

More Information about eLife: http://www.elifesciences.org

Original Publication:
Pretto P., Bresciani J.-P., Rainer G., Bülthoff H. H. (2012) Foggy perception slows us down. eLife. doi: 10.7554/eLife.00031.001
Contact:
Dr. Paolo Pretto
Phone: +49 7071 601-644
E-mail: paolo.pretto@tuebingen.mpg.de
Stephanie Bertenbreiter (Public Relations)
Phone: +49 7071 601-1792
E-mail: presse-kyb@tuebingen.mpg.de
Printable images can be obtained at the Public Relations Office. Please send a proof upon publication.

The Max Planck Institute for Biological Cybernetics works in the elucidation of cognitive processes. It employs about 300 people from more than 40 countries and is located at the Max Planck Campus in Tübingen, Germany. The Max Planck Institute for Biological Cybernetics is one of 80 research institutes that the Max Planck Society for the Advancement of Science maintains in Germany and abroad.

Stephanie Bertenbreiter | Max-Planck-Institut
Further information:
http://tuebingen.mpg.de/en/homepage/detail/foggy-perception-slows-us-down.html

More articles from Life Sciences:

nachricht Cancer diagnosis: no more needles?
25.05.2018 | Christian-Albrechts-Universität zu Kiel

nachricht Less is more? Gene switch for healthy aging found
25.05.2018 | Leibniz-Institut für Alternsforschung - Fritz-Lipmann-Institut e.V. (FLI)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Powerful IT security for the car of the future – research alliance develops new approaches

The more electronics steer, accelerate and brake cars, the more important it is to protect them against cyber-attacks. That is why 15 partners from industry and academia will work together over the next three years on new approaches to IT security in self-driving cars. The joint project goes by the name Security For Connected, Autonomous Cars (SecForCARs) and has funding of €7.2 million from the German Federal Ministry of Education and Research. Infineon is leading the project.

Vehicles already offer diverse communication interfaces and more and more automated functions, such as distance and lane-keeping assist systems. At the same...

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

In focus: Climate adapted plants

25.05.2018 | Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

 
Latest News

In focus: Climate adapted plants

25.05.2018 | Event News

Flow probes from the 3D printer

25.05.2018 | Machine Engineering

Less is more? Gene switch for healthy aging found

25.05.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>