Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


FMP and MDC Researchers Identify a Fundamental Process in Lysosomal Function and Protein Degradation

The degradation of proteins and other macromolecules in cells is vital to survival. Disruption of this process can result in serious disease.

The research group of Professor Thomas Jentsch (Leibniz Institute for Molecular Pharmacology, FMP/ Max Delbrück Center for Molecular Medicine, MDC, Berlin-Buch) has now succeeded in identifying an essential cellular process necessary for the transport and degradation of macromolecules in endosomes and lysosomes, respectively. In two studies published in the same issue of Science, they showed that contrary to scientific consensus the function of these cell organelles not only depends on the pH, but also on chloride ion accumulation in their interior.*

Proteins are the building blocks and machines of life. Tens of thousands of them are present in each cell, where they perform essential tasks for the organism. Once they have fulfilled their function, they must be degraded to avoid causing damage. One way in which proteins can be degraded is via the digestion processes inside tiny cellular organelles, the lysosomes. The transport of the proteins destined for degradation to these cellular “trash bins” is partly carried out by endosomes, which deliver proteins from the cell surface to the cell interior.

The functionality of both endosomes and lysosomes depends on the ion concentration within their membrane-enclosed interior. In particular, an important role is ascribed to a high concentration of hydrogen ions, i.e. an acidic pH, inside those organelles.

The two studies by Dr. Stefanie Weinert, Dr. Gaia Novarino and Professor Thomas Jentsch focus on two ion transport proteins, the chloride transporters ClC-5 and ClC-7. These are located in the membrane of endosomes and/or lysosomes and exchange negatively charged chloride ions for positively charged hydrogen ions (protons).

ClC-5 is located in the membrane of endosomes in renal cells. If ClC-5 is defective or lacking altogether, proteins can hardly be absorbed from the urine any longer. In a cascade of indirect mechanisms, this leads to the development of kidney stones in Dent’s disease.

ClC-7 is located in the membrane of lysosomes in all cells of the body. The research group by Thomas Jentsch showed already a few years ago that mutations of ClC-7 in mice and humans lead to severe disease symptoms. Impaired lysosomal function in the brain results in severe degenerative changes that leads to massive neuronal death. A dysfunction of bone-degrading osteoclasts causes an excessive calcification of bones (osteopetrosis).

The chloride-proton exchangers ClC-5 and ClC-7 function parallel to proton pumps, which ensures an acidic environment within endosomes and lysosomes. ClC-5 and ClC-7 transport chloride ions into these organelles, thereby electrically balancing the inward transport of positively charged protons through the “pump”. Hitherto researchers had assumed that maintaining the charge balance was the sole task of ClC-5 and ClC-7, without which both the transport of endosomes and lysosomal protein degradation are impaired.

However, Professor Jentsch and his team showed several years ago that the pH in lysosomes devoid of ClC-7 is normal and that nevertheless lysosomal storage disease and osteopetrosis ensue. This means that charge balancing in lysosomes may involve a different, previously unknown mechanism, and that the main task of ClC-7 may rather be the regulation of lysosomal chloride concentration. The Berlin research group proposed that the exchange of chloride for protons, which are more highly concentrated in the acidic environment of lysosomes than in the rest of the cell, accumulates chloride ions in lysosomes. A high lysosomal chloride concentration may be functionally important.

“In an elegant experimental approach” as Professor Jentsch explains the test of this hypothesis, “Dr. Novarino and Dr. Weinert converted the ClC-5 and ClC-7 chloride-proton exchangers in the mouse into pure chloride conductors (channels). They exchanged a single amino acid out of a total of around 800 present in the ion transporters”. These mutated transport proteins are optimally suited to compensate the charge transfer by the proton pump and therefore should, according to the hypothesis of the research group, support the acidification of the organelles very well.

On the other hand, the uncoupling of chloride transport from proton transport should significantly lower the accumulation of chloride into these organelles. Indeed, this prediction was confirmed experimentally in their mouse model. “Surprisingly,” Professor Jentsch said, “the corresponding mice showed almost the same disease symptoms as with a total lack of the respective proteins.”

With this experiment, the MDC and FMP researchers were able to show for the first time that not only the lack of endosomal/lysosomal acidification, but also a reduced accumulation of chloride ions in these organelles plays a crucial role in generating the severe symptoms of these hereditary diseases, that is a form of kidney stone disease as well as neurodegeneration. A dysregulation of organellar chloride concentration may also play a role in other human diseases.

*Science 11 June 2010, Vol. 328. no. 5984, pp. 1398-1401; DOI: 10.1126/science.1188070; originally published in Science Express on 29 April 2010
*Endosomal Chloride-Proton Exchange Rather Than Chloride Conductance is Crucial for Renal Endocytosis
Gaia Novarino1, Stefanie Weinert1, Gesa Rickheit1,2 & Thomas J. Jentsch1
1 Leibniz-Institut für Molekulare Pharmakologie (FMP)and Max-Delbrück-Centrum für Molekulare Medizin (MDC), Berlin, Germany

2 Present address: TaconicArtemis GmbH, Köln, Germany

Science 11 June 2010, Vol. 328. no. 5984, pp. 1401-1403, DOI: 10.1126/science.1188072; originally published in Science Express on 29 April 2010; * Lysosomal Pathology and Osteopetrosis Upon Loss of H+-Driven Lysosomal Cl- Accumulation
Stefanie Weinert1,2, Sabrina Jabs1,2,6, Chayarop Supanchart3, Michaela Schweizer4, Niclas Gimber1,2, Martin Richter1,6, Jörg Rademann1,6,7, Tobias Stauber1,2,Uwe Kornak3,5 & Thomas J. Jentsch1,2
1 Leibniz-Institut für Molekulare Pharmakologie (FMP), Berlin, Germany
2 Max-Delbrück-Centrum für Molekulare Medizin (MDC), Berlin, Germany
3 Institut für Medizinische Genetik, Charité Universitätsmedizin Berlin, Germany
4 Zentrum für Molekulare Neurobiologie (ZMNH), Universität Hamburg, Hamburg, Germany
5 Max-Planck-Institut für Molekulare Genetik, Berlin, Germany
6 Freie Universität, Berlin, Germany
7Present address: Institut für Pharmazie, Universität Leipzig, Leipzig, Germany
Barbara Bachtler
Press and Public Affairs
Max Delbrück Center for Molecular Medicine (MDC) Berlin-Buch
Robert-Rössle-Straße 10; 13125 Berlin; Germany
Phone: +49 (0) 30 94 06 - 38 96
Fax: +49 (0) 30 94 06 - 38 33

Barbara Bachtler | Max-Delbrück-Centrum
Further information:

More articles from Life Sciences:

nachricht Biologists unravel another mystery of what makes DNA go 'loopy'
16.03.2018 | Emory Health Sciences

nachricht Scientists map the portal to the cell's nucleus
16.03.2018 | Rockefeller University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

Im Focus: Surveying the Arctic: Tracking down carbon particles

Researchers embark on aerial campaign over Northeast Greenland

On 15 March, the AWI research aeroplane Polar 5 will depart for Greenland. Concentrating on the furthest northeast region of the island, an international team...

Im Focus: Unique Insights into the Antarctic Ice Shelf System

Data collected on ocean-ice interactions in the little-researched regions of the far south

The world’s second-largest ice shelf was the destination for a Polarstern expedition that ended in Punta Arenas, Chile on 14th March 2018. Oceanographers from...

Im Focus: ILA 2018: Laser alternative to hexavalent chromium coating

At the 2018 ILA Berlin Air Show from April 25–29, the Fraunhofer Institute for Laser Technology ILT is showcasing extreme high-speed Laser Material Deposition (EHLA): A video documents how for metal components that are highly loaded, EHLA has already proved itself as an alternative to hard chrome plating, which is now allowed only under special conditions.

When the EU restricted the use of hexavalent chromium compounds to special applications requiring authorization, the move prompted a rethink in the surface...

Im Focus: Radar for navigation support from autonomous flying drones

At the ILA Berlin, hall 4, booth 202, Fraunhofer FHR will present two radar sensors for navigation support of drones. The sensors are valuable components in the implementation of autonomous flying drones: they function as obstacle detectors to prevent collisions. Radar sensors also operate reliably in restricted visibility, e.g. in foggy or dusty conditions. Due to their ability to measure distances with high precision, the radar sensors can also be used as altimeters when other sources of information such as barometers or GPS are not available or cannot operate optimally.

Drones play an increasingly important role in the area of logistics and services. Well-known logistic companies place great hope in these compact, aerial...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

International Virtual Reality Conference “IEEE VR 2018” comes to Reutlingen, Germany

08.03.2018 | Event News

Latest News

Wandering greenhouse gas

16.03.2018 | Earth Sciences

'Frequency combs' ID chemicals within the mid-infrared spectral region

16.03.2018 | Physics and Astronomy

Biologists unravel another mystery of what makes DNA go 'loopy'

16.03.2018 | Life Sciences

Science & Research
Overview of more VideoLinks >>>