Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Got flow cytometry? All you need is 5 bucks and a cell phone

27.07.2011
Flow cytometry, a technique for counting and examining cells, bacteria and other microscopic particles, is used routinely in diagnosing disorders, infections and cancers and evaluating the progression of HIV and AIDS.

But flow cytometers are big, bulky contraptions that cost tens of thousands of dollars, making them less than ideal for health care in the field or other settings where resources are limited.

Now imagine you could achieve the same results using a device that weighs about half an ounce and costs less than five dollars.

Researchers at the BioPhotonics Laboratory at the UCLA Henry Samueli School of Engineering and Applied Science have developed a compact, lightweight and cost-effective optofluidic platform that integrates imaging cytometry and florescent microscopy and can be attached to a cell phone. The resulting device can be used to rapidly image bodily fluids for cell counts or cell analysis.

The research, which was led by Aydogan Ozcan, a professor of electrical engineering and bioengineering and a member of the California NanoSystems Institute at UCLA, is currently available online in the journal Analytical Chemistry.

"In this work, we developed a cell phone–based imaging cytometry device with a very simple optical design, which is very cost-effective and easy to operate," said Hongying Zhu, a UCLA Engineering postdoctoral scholar at the BioPhotonics Lab and co-author of the research. "It has great potential to be used in resource-limited regions to help people there improve the quality of their health care."

The device is the latest advance by Ozcan's research team, which has developed a number of innovative, scaled-down, cell phone–based technologies that have the potential to transform global health care.

"We have more than 5 billion cell phone subscribers around the world today, and because of this, cell phones can now play a central role in telemedicine applications," Ozcan said. "Our research group has already created a very nice set of tools, including cell phone microscopes, that can potentially replace most of the advanced instruments used currently in laboratories."

How it works

Ozcan's group integrated compact optical attachments to create the optofluidic fluorescent cytometry platform. The platform, which weighs only 18 grams, includes:

1 simple lens (less than $3)
1 plastic color filter (less than $1)
2 LEDs (less than 30 cents each)
Simple batteries
The microfluidic assembly is placed just above a separate, inexpensive lens that is put in contact with the cell phone's existing camera unit. This way, the entire cross-section of the microfluidic device can be mapped onto the phone's CMOS sensor-chip. The sample fluid is delivered continuously through a disposable microfluidic channel via a syringe pump.

The device is illuminated from the side by the LEDs using a simple butt-coupling technique. The excitation light is then guided within the cross-section of the device, uniformly exciting the specimens in the imaging fluid. The optofluidic pumping scheme also allows for the use of an inexpensive plastic absorption filter to create the dark-field background needed for fluorescent imaging.

In addition, video post-processing and contour-detection and tracking algorithms are used to count and label the cells or particles passing through the microfluidic chip.

In order to demonstrate proof-of-concept for the new platform, the team used the device to measure the density of white blood cells in human whole-blood samples, as white blood cell density is routinely tested to diagnosis various diseases and infections, including leukemia, HIV and bone marrow deficiencies.

"For the next step, we'd like to explore other potential applications of this device," Zhu said. "For example, we also want to utilize this device to count potential waterborne parasites for water-quality monitoring."

"We'd like to translate our devices for testing in the field and start using them in places they're supposed to be used," Ozcan said. "So I think the next stage for several of our technologies, including this one, is to deploy and test them in extremely poor-resource countries."

This study was funded by the National Institutes of Health, the National Science Foundation, the Office of Naval Research, the Gates Foundation and the Vodafone Americas Foundation.

The UCLA Henry Samueli School of Engineering and Applied Science, established in 1945, offers 28 academic and professional degree programs and has an enrollment of almost 5,000 students. The school's distinguished faculty are leading research to address many of the critical challenges of the 21st century, including renewable energy, clean water, health care, wireless sensing and networking, and cybersecurity. Ranked among the top 10 engineering schools at public universities nationwide, the school is home to seven multimillion-dollar interdisciplinary research centers in wireless sensor systems, nanoelectronics, nanomedicine, renewable energy, customized computing, and the smart grid, all funded by federal and private agencies. (www.engineer.ucla.edu | www.twitter.com/uclaengineering)

For more UCLA news, visit UCLA Newsroom and UCLA News|Week and follow us on Twitter.

Wileen Wong Kromhout | EurekAlert!
Further information:
http://www.ucla.edu

Further reports about: Applied Science Biophotonics HIV LED UCLA Zhu blood cell cell phone health care renewable energy

More articles from Life Sciences:

nachricht The birth of a new protein
20.10.2017 | University of Arizona

nachricht Building New Moss Factories
20.10.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>