Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Exploring a parasitic tunnel boring machine

16.06.2014

Parasitic worm genome and biology provides a solid basis for the development of new interventions

Researchers have deduced essential biological and genetic information from the genome sequence of the whipworm, an intestinal parasitic worm that infects hundreds of millions of people in developing countries.

This information acts as the foundation for the development of new strategies and treatments against this debilitating parasite.

The whipworm is one of three types of soil-transmitted parasitic worms that collectively infect nearly two billion people. While infections often result in mild disease they may also lead to serious and long-term damage such as malnutrition, stunted growth and impaired learning ability. The full extent of worm-associated morbidity and the effect it has on socio-economic development in endemic countries is unknown.

This unusual parasite bores miniature tunnels through the lining of the large intestine where it may live for years. The study has identified molecules that the parasite uses for tunnelling, how the parasite limits the damage it inflicts, and how the immune system responds to infection.

"Worm infections are an enormous public health problem across the Developing World and with so few effective drugs, the emergence of drug resistance is an ever present risk," says Dr Matthew Berriman, senior author from the Wellcome Trust Sanger Institute. "Our work starts to unravel the whipworm's intimate relationship with humans and paves the way for new approaches to prevent or clear whipworm infections.

"Making these genome sequences freely available will provide an enormous boost to the entire research community that is working on interventions to prevent or treat worm-associated disease."

The team sequenced the genome of both a human- and a mouse-infective form of the whipworm and examined the genes that are most active and may be essential for its survival. Equipped with this information, the team mined for drug targets that could be used against the whipworm and potentially other parasitic worms.

The genome sequence and the range of proteins the whipworm produces provides a biological understanding of the extraordinary niche this worm has evolved to live in. The team found specific digestive enzymes secreted by the whipworm may burrow through the cells in the gut wall. Other enzymes secreted by the parasite seem to contain the 'collateral damage' caused by these digestive enzymes to reduce inflammation and damage to the host's cells.

"In my experience working with children in Ecuador, these parasites, particularly when present in large numbers in an individual, can have profound effects on health," says Professor Philip Cooper, author and clinician from the Liverpool School of Tropical Medicine. "With more than 800 million children worldwide in need of treatment against these particular worms, and because we have only one or two drugs that are safe and effective against these parasites, it is essential that we focus our research on finding new treatments before resistance to the drugs we have has a chance to develop. This study not only opens doors for the development of new drugs but also may allow us to identify already existing drugs used for other diseases that might be effective against this parasite and other types of worms.

"Getting to grips with the genomes and the underlying biology of parasitic worms such as the whipworm is our best option to tackle this growing global problem."

Whipworm eggs are currently being tested in clinical trials as a treatment against various autoimmune diseases, as it is thought that worm infections may reduce the inflammation associated with disorders such as multiple sclerosis and inflammatory bowel disease. To determine how the immune system responds to infection, mice were exposed to the mouse-specific type of whipworm. The researchers found that infection caused changes to the activity of many mouse genes that have been associated with inflammatory diseases such as ulcerative colitis.

"Although whipworms can be detrimental to human health and economic growth in some regions, they are also important in defining our immune system's 'set point' and ensuring we make the right level of immune response during disease," says Professor Richard Grencis, senior author from The University of Manchester. "The present study shows how both the parasite and the host respond to each other at a level of detail never seen before, that will help us identify how to exploit the ways in which the worm modifies our bodies.

"This finely tuned interaction that has developed over the course of evolution can lead us to design better drug treatments and more effective clinical trials using worms and their products."

###

Notes to Editors

Publication Details Foth BJ, Tsai IJ, Reid AJ, Bancroft AJ, et al (2014). The whipworm genome and dual-species transcriptomics of an intimate host-pathogen interaction. Nature Genetics. DOI: 10.1038/ng.3010

Participating Centres Please see the paper for a full list of participating centres.

Selected Websites

The Liverpool School of Tropical Medicine (LSTM) has been engaged in the fight against infectious, debilitating and disabling diseases since 1898 and continues that tradition today with a research portfolio in excess of well over £200 million and a teaching programme attracting students from over 65 countries. http://www.lstmliverpool.ac.uk/

The University of Manchester, a member of the prestigious Russell Group of British universities, is the largest and most popular university in the UK. It has 20 academic schools and hundreds of specialist research groups undertaking pioneering multi-disciplinary teaching and research of worldwide significance. According to the results of the 2008 Research Assessment Exercise, The University of Manchester is one of the country's major research institutions, rated third in the UK in terms of 'research power', and has had no fewer than 25 Nobel laureates either work or study there. The University had an annual income of £807 million in 2011/12. http://www.manchester.ac.uk/

The Wellcome Trust Sanger Institute is one of the world's leading genome centres. Through its ability to conduct research at scale, it is able to engage in bold and long-term exploratory projects that are designed to influence and empower medical science globally. Institute research findings, generated through its own research programmes and through its leading role in international consortia, are being used to develop new diagnostics and treatments for human disease. http://www.sanger.ac.uk

The Wellcome Trust is a global charitable foundation dedicated to achieving extraordinary improvements in human and animal health. We support the brightest minds in biomedical research and the medical humanities. Our breadth of support includes public engagement, education and the application of research to improve health. We are independent of both political and commercial interests. http://www.wellcome.ac.uk

Mary Clarke | Eurek Alert!

Further reports about: damage diseases drugs enzymes immune infections parasite parasitic treatments

More articles from Life Sciences:

nachricht New mechanisms uncovered explaining frost tolerance in plants
26.09.2016 | Technische Universität München

nachricht Chains of nanogold – forged with atomic precision
23.09.2016 | Suomen Akatemia (Academy of Finland)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: OLED microdisplays in data glasses for improved human-machine interaction

The Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP has been developing various applications for OLED microdisplays based on organic semiconductors. By integrating the capabilities of an image sensor directly into the microdisplay, eye movements can be recorded by the smart glasses and utilized for guidance and control functions, as one example. The new design will be debuted at Augmented World Expo Europe (AWE) in Berlin at Booth B25, October 18th – 19th.

“Augmented-reality” and “wearables” have become terms we encounter almost daily. Both can make daily life a little simpler and provide valuable assistance for...

Im Focus: Artificial Intelligence Helps in the Discovery of New Materials

With the help of artificial intelligence, chemists from the University of Basel in Switzerland have computed the characteristics of about two million crystals made up of four chemical elements. The researchers were able to identify 90 previously unknown thermodynamically stable crystals that can be regarded as new materials. They report on their findings in the scientific journal Physical Review Letters.

Elpasolite is a glassy, transparent, shiny and soft mineral with a cubic crystal structure. First discovered in El Paso County (Colorado, USA), it can also be...

Im Focus: Complex hardmetal tools out of the 3D printer

For the first time, Fraunhofer IKTS shows additively manufactured hardmetal tools at WorldPM 2016 in Hamburg. Mechanical, chemical as well as a high heat resistance and extreme hardness are required from tools that are used in mechanical and automotive engineering or in plastics and building materials industry. Researchers at the Fraunhofer Institute for Ceramic Technologies and Systems IKTS in Dresden managed the production of complex hardmetal tools via 3D printing in a quality that are in no way inferior to conventionally produced high-performance tools.

Fraunhofer IKTS counts decades of proven expertise in the development of hardmetals. To date, reliable cutting, drilling, pressing and stamping tools made of...

Im Focus: Launch of New Industry Working Group for Process Control in Laser Material Processing

At AKL’16, the International Laser Technology Congress held in May this year, interest in the topic of process control was greater than expected. Appropriately, the event was also used to launch the Industry Working Group for Process Control in Laser Material Processing. The group provides a forum for representatives from industry and research to initiate pre-competitive projects and discuss issues such as standards, potential cost savings and feasibility.

In the age of industry 4.0, laser technology is firmly established within manufacturing. A wide variety of laser techniques – from USP ablation and additive...

Im Focus: New laser joining technologies at ‘K 2016’ trade fair

Every three years, the plastics industry gathers at K, the international trade fair for plastics and rubber in Düsseldorf. The Fraunhofer Institute for Laser Technology ILT will also be attending again and presenting many innovative technologies, such as for joining plastics and metals using ultrashort pulse lasers. From October 19 to 26, you can find the Fraunhofer ILT at the joint Fraunhofer booth SC01 in Hall 7.

K is the world’s largest trade fair for the plastics and rubber industry. As in previous years, the organizers are expecting 3,000 exhibitors and more than...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Experts from industry and academia discuss the future mobile telecommunications standard 5G

23.09.2016 | Event News

ICPE in Graz for the seventh time

20.09.2016 | Event News

Using mathematical models to understand our brain

16.09.2016 | Event News

 
Latest News

Stronger turbine blades with molybdenum silicides

26.09.2016 | Materials Sciences

Scientists Find Twisting 3-D Raceway for Electrons in Nanoscale Crystal Slices

26.09.2016 | Materials Sciences

Lowering the Heat Makes New Materials Possible While Saving Energy

26.09.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>