Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Explaining why pruning encourages plants to thrive

24.09.2009
Scientists have shown that the main shoot dominates a plant’s growth principally because it was there first, rather than due to its position at the top of the plant.

Collaborating teams from the University of York in the UK and the University of Calgary in Canada combined their expertise in molecular genetics and computational modelling to make a significant discovery that helps explain why pruning encourages plants to thrive.

It is well known that the main growing shoot of a plant can inhibit the growth of the shoots below... What we are interested in is exactly how the main shoot can exert this effect

Professor Ottoline Leyser
Understanding of the action and interaction of these hormones can inform horticultural practices aimed at changing branching patterns in diverse crops.

The research was funded by the Biotechnology and Biological Sciences Research Council (BBSRC) and the Natural Sciences and Engineering Research Council of Canada (NSERC).

Led by Professors Ottoline Leyser and Przemyslaw Prusinkiewicz and published by the journal PNAS, the research showed that all shoot tips on a plant can influence each other’s growth.

Professor Leyser, of the University of York’s Department of Biology, said: “It is well known that the main growing shoot of a plant can inhibit the growth of the shoots below – that’s why we prune to encourage growth of branches. What we are interested in is exactly how the main shoot can exert this effect.

“It has been known since the 1930s that the plant hormone auxin is released by the plant’s actively growing tip and is transported down the main stem where it has an indirect effect on buds to inhibit branching. There are a number of ways in which the hormone exerts this effect and we have discovered a new path by which it works.”

The research suggests that for a shoot tip to be active, it must be able to export auxin into the main stem. But if substantial amounts of auxin already exist in the main stem, export from an additional shoot tip cannot be established.

Professor Leyser said: “Using this mechanism, all the shoot tips on a plant compete with each other, so that tips both above and below can influence each other's growth. This allows the strongest branches to grow the most vigorously, wherever they may be on the plant. The main shoot dominates mostly because it was there first, rather than because of its position at the apex of the plant.”

The teams went on to show that the recently discovered plant hormone, strigolactone, works at least in part by making it harder to establish new auxin transport pathways from shoot tips, strengthening the competition between auxin sources and reducing branching.

The research also involved scientists at the Department of Forest Genetics and Plant Physiology at the Swedish University of Agricultural Sciences.

Notes to editors:
The paper Control of Bud Activation by an Auxin Transport Switch (manuscript tracking number of 2009-06696R) is available at http://www.pnas.org/content/early/recent
The University of York’s Department of Biology is one of the leading centres for biological teaching and research in the UK. In the 2008 Research Assessment Exercise, it was ranked equal first among broad spectrum bioscience departments in the UK for quality that was judged to be world-leading. The Department both teaches degree courses and undertakes research across the whole spectrum of modern Biology, from molecular genetics and biochemistry to ecology. Its biomedical research includes an Immunology and Infection Unit (jointly with the Hull York Medical School), work on infertility and three research professors funded by Yorkshire Cancer Research and York Against Cancer.

The Biotechnology and Biological Sciences Research Council (BBSRC) is the UK funding agency for research in the life sciences. Sponsored by Government, BBSRC annually invests around £450 million in a wide range of research that makes a significant contribution to the quality of life for UK citizens and supports a number of important industrial stakeholders including the agriculture, food, chemical, healthcare and pharmaceutical sectors. BBSRC carries out its mission by funding internationally competitive research, providing training in the biosciences, fostering opportunities for knowledge transfer and innovation and promoting interaction with the public and other stakeholders on issues of scientific interest in universities, centres and institutes.

David Garner | EurekAlert!
Further information:
http://www.york.ac.uk

More articles from Life Sciences:

nachricht Antimicrobial substances identified in Komodo dragon blood
23.02.2017 | American Chemical Society

nachricht New Mechanisms of Gene Inactivation may prevent Aging and Cancer
23.02.2017 | Leibniz-Institut für Alternsforschung - Fritz-Lipmann-Institut e.V. (FLI)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

From rocks in Colorado, evidence of a 'chaotic solar system'

23.02.2017 | Physics and Astronomy

'Quartz' crystals at the Earth's core power its magnetic field

23.02.2017 | Earth Sciences

Antimicrobial substances identified in Komodo dragon blood

23.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>