Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Whole exome sequencing identifies cause of metabolic disease

06.02.2012
Sequencing a patient’s entire genome to discover the source of his or her disease is not routine – yet. But geneticists are getting close.
A case report, published this week in the American Journal of Human Genetics, shows how researchers can combine a simple blood test with an “executive summary” scan of the genome to diagnose a type of severe metabolic disease.

Researchers at Emory University School of Medicine and Sanford-Burnham Medical Research Institute used “whole-exome sequencing” to find the mutations causing a glycosylation disorder in a boy born in 2004. Mutations in the gene (called DDOST) that is responsible for the boy’s disease had not been previously seen in other cases of glycosylation disorders.

Whole-exome sequencing is a cheaper, faster, but still efficient strategy for reading the parts of the genome scientists believe are the most important for diagnosing disease. The report illustrates how whole-exome sequencing, which was first offered commercially for clinical diagnosis in 2011, is entering medical practice. Emory Genetics Laboratory is now gearing up to start offering whole exome sequencing as a clinical diagnostic service.

It is estimated that most disease-causing mutations (around 85 percent) are found within the regions of the genome that encode proteins, the workhorse machinery of the cell. Whole-exome sequencing reads only the parts of the human genome that encode proteins, leaving the other 99 percent of the genome unread.

The boy in the case report was identified by Hudson Freeze, PhD and his colleagues. Freeze is director of the Genetic Disease Program at Sanford-Burnham Medical Research Institute. A team led by Madhuri Hegde, PhD, associate professor of human genetics at Emory University School of Medicine and director of the Emory Genetics Laboratory, identified the gene responsible. Postdoctoral fellow Melanie Jones is the first author of the paper.

“This is part of an ongoing effort to develop diagnostic strategies for congenital disorders of glycosylation,” Hegde says. “We have a collaboration with Dr. Freeze to identify new mutations.”

Glycosylation is the process of attaching sugar molecules to proteins that appear on the outside of the cell. Defects in glycosylation can be identified through a relatively simple blood test that detects abnormalities in blood proteins. The sugars are important for cells to send signals and stick to each other properly. Patients with inherited defects in glycosylation have a broad spectrum of medical issues, such as developmental delay, digestive and liver problems and blood clotting defects.

The boy in this case report was developmentally delayed and had digestive problems, vision problems, tremors and blood clotting deficiencies. He did not walk until age 3 and cannot use language. The researchers showed that he had inherited a gene deletion from the father and a genetic misspelling from the mother.
"Over the years, we've come to know many families and their kids with glycosylation disorders. Here we can tell them their boy is a true ‘trail-blazer’ for this new disease,” Freeze said. “Their smiles—that’s our bonus checks."

The researchers went on to show that introducing the healthy version of the DDOST gene into the patient’s cells in the laboratory could restore normal protein glycosylation. Thus, restoring normal function by gene therapy is conceivable, if still experimental. However, restoration of normal glycosylation would be extremely difficult to achieve for most of the existing cells in the body.

The research was supported by the National Institutes of Health and by the Rocket Fund.

Reference: M.A. Jones et al. DDOST Mutations Identified by Whole-Exome Sequencing Are Implicated in Congenital Disorders of Glycosylation, online first, Am. J. Hum. Gen (2012). doi:10.1016/j.ajhg.2011.12.024

Holly Korschun | EurekAlert!
Further information:
http://www.emory.edu

More articles from Life Sciences:

nachricht The balancing act: An enzyme that links endocytosis to membrane recycling
07.12.2016 | National Centre for Biological Sciences

nachricht Transforming plant cells from generalists to specialists
07.12.2016 | Duke University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

NTU scientists build new ultrasound device using 3-D printing technology

07.12.2016 | Health and Medicine

The balancing act: An enzyme that links endocytosis to membrane recycling

07.12.2016 | Life Sciences

How to turn white fat brown

07.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>