Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Whole exome sequencing identifies cause of metabolic disease

06.02.2012
Sequencing a patient’s entire genome to discover the source of his or her disease is not routine – yet. But geneticists are getting close.
A case report, published this week in the American Journal of Human Genetics, shows how researchers can combine a simple blood test with an “executive summary” scan of the genome to diagnose a type of severe metabolic disease.

Researchers at Emory University School of Medicine and Sanford-Burnham Medical Research Institute used “whole-exome sequencing” to find the mutations causing a glycosylation disorder in a boy born in 2004. Mutations in the gene (called DDOST) that is responsible for the boy’s disease had not been previously seen in other cases of glycosylation disorders.

Whole-exome sequencing is a cheaper, faster, but still efficient strategy for reading the parts of the genome scientists believe are the most important for diagnosing disease. The report illustrates how whole-exome sequencing, which was first offered commercially for clinical diagnosis in 2011, is entering medical practice. Emory Genetics Laboratory is now gearing up to start offering whole exome sequencing as a clinical diagnostic service.

It is estimated that most disease-causing mutations (around 85 percent) are found within the regions of the genome that encode proteins, the workhorse machinery of the cell. Whole-exome sequencing reads only the parts of the human genome that encode proteins, leaving the other 99 percent of the genome unread.

The boy in the case report was identified by Hudson Freeze, PhD and his colleagues. Freeze is director of the Genetic Disease Program at Sanford-Burnham Medical Research Institute. A team led by Madhuri Hegde, PhD, associate professor of human genetics at Emory University School of Medicine and director of the Emory Genetics Laboratory, identified the gene responsible. Postdoctoral fellow Melanie Jones is the first author of the paper.

“This is part of an ongoing effort to develop diagnostic strategies for congenital disorders of glycosylation,” Hegde says. “We have a collaboration with Dr. Freeze to identify new mutations.”

Glycosylation is the process of attaching sugar molecules to proteins that appear on the outside of the cell. Defects in glycosylation can be identified through a relatively simple blood test that detects abnormalities in blood proteins. The sugars are important for cells to send signals and stick to each other properly. Patients with inherited defects in glycosylation have a broad spectrum of medical issues, such as developmental delay, digestive and liver problems and blood clotting defects.

The boy in this case report was developmentally delayed and had digestive problems, vision problems, tremors and blood clotting deficiencies. He did not walk until age 3 and cannot use language. The researchers showed that he had inherited a gene deletion from the father and a genetic misspelling from the mother.
"Over the years, we've come to know many families and their kids with glycosylation disorders. Here we can tell them their boy is a true ‘trail-blazer’ for this new disease,” Freeze said. “Their smiles—that’s our bonus checks."

The researchers went on to show that introducing the healthy version of the DDOST gene into the patient’s cells in the laboratory could restore normal protein glycosylation. Thus, restoring normal function by gene therapy is conceivable, if still experimental. However, restoration of normal glycosylation would be extremely difficult to achieve for most of the existing cells in the body.

The research was supported by the National Institutes of Health and by the Rocket Fund.

Reference: M.A. Jones et al. DDOST Mutations Identified by Whole-Exome Sequencing Are Implicated in Congenital Disorders of Glycosylation, online first, Am. J. Hum. Gen (2012). doi:10.1016/j.ajhg.2011.12.024

Holly Korschun | EurekAlert!
Further information:
http://www.emory.edu

More articles from Life Sciences:

nachricht Antimicrobial substances identified in Komodo dragon blood
23.02.2017 | American Chemical Society

nachricht New Mechanisms of Gene Inactivation may prevent Aging and Cancer
23.02.2017 | Leibniz-Institut für Alternsforschung - Fritz-Lipmann-Institut e.V. (FLI)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

From rocks in Colorado, evidence of a 'chaotic solar system'

23.02.2017 | Physics and Astronomy

'Quartz' crystals at the Earth's core power its magnetic field

23.02.2017 | Earth Sciences

Antimicrobial substances identified in Komodo dragon blood

23.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>