Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Whole exome sequencing identifies cause of metabolic disease

06.02.2012
Sequencing a patient’s entire genome to discover the source of his or her disease is not routine – yet. But geneticists are getting close.
A case report, published this week in the American Journal of Human Genetics, shows how researchers can combine a simple blood test with an “executive summary” scan of the genome to diagnose a type of severe metabolic disease.

Researchers at Emory University School of Medicine and Sanford-Burnham Medical Research Institute used “whole-exome sequencing” to find the mutations causing a glycosylation disorder in a boy born in 2004. Mutations in the gene (called DDOST) that is responsible for the boy’s disease had not been previously seen in other cases of glycosylation disorders.

Whole-exome sequencing is a cheaper, faster, but still efficient strategy for reading the parts of the genome scientists believe are the most important for diagnosing disease. The report illustrates how whole-exome sequencing, which was first offered commercially for clinical diagnosis in 2011, is entering medical practice. Emory Genetics Laboratory is now gearing up to start offering whole exome sequencing as a clinical diagnostic service.

It is estimated that most disease-causing mutations (around 85 percent) are found within the regions of the genome that encode proteins, the workhorse machinery of the cell. Whole-exome sequencing reads only the parts of the human genome that encode proteins, leaving the other 99 percent of the genome unread.

The boy in the case report was identified by Hudson Freeze, PhD and his colleagues. Freeze is director of the Genetic Disease Program at Sanford-Burnham Medical Research Institute. A team led by Madhuri Hegde, PhD, associate professor of human genetics at Emory University School of Medicine and director of the Emory Genetics Laboratory, identified the gene responsible. Postdoctoral fellow Melanie Jones is the first author of the paper.

“This is part of an ongoing effort to develop diagnostic strategies for congenital disorders of glycosylation,” Hegde says. “We have a collaboration with Dr. Freeze to identify new mutations.”

Glycosylation is the process of attaching sugar molecules to proteins that appear on the outside of the cell. Defects in glycosylation can be identified through a relatively simple blood test that detects abnormalities in blood proteins. The sugars are important for cells to send signals and stick to each other properly. Patients with inherited defects in glycosylation have a broad spectrum of medical issues, such as developmental delay, digestive and liver problems and blood clotting defects.

The boy in this case report was developmentally delayed and had digestive problems, vision problems, tremors and blood clotting deficiencies. He did not walk until age 3 and cannot use language. The researchers showed that he had inherited a gene deletion from the father and a genetic misspelling from the mother.
"Over the years, we've come to know many families and their kids with glycosylation disorders. Here we can tell them their boy is a true ‘trail-blazer’ for this new disease,” Freeze said. “Their smiles—that’s our bonus checks."

The researchers went on to show that introducing the healthy version of the DDOST gene into the patient’s cells in the laboratory could restore normal protein glycosylation. Thus, restoring normal function by gene therapy is conceivable, if still experimental. However, restoration of normal glycosylation would be extremely difficult to achieve for most of the existing cells in the body.

The research was supported by the National Institutes of Health and by the Rocket Fund.

Reference: M.A. Jones et al. DDOST Mutations Identified by Whole-Exome Sequencing Are Implicated in Congenital Disorders of Glycosylation, online first, Am. J. Hum. Gen (2012). doi:10.1016/j.ajhg.2011.12.024

Holly Korschun | EurekAlert!
Further information:
http://www.emory.edu

More articles from Life Sciences:

nachricht Symbiotic bacteria: from hitchhiker to beetle bodyguard
28.04.2017 | Johannes Gutenberg-Universität Mainz

nachricht Nose2Brain – Better Therapy for Multiple Sclerosis
28.04.2017 | Fraunhofer-Institut für Grenzflächen- und Bioverfahrenstechnik IGB

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>