Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Excess DNA damage found in cells of patients with Friedreich's ataxia

Biomarkers, new treatments possible for Friedreich's ataxia

Elevated levels of DNA damage have for the first time been found in the cellular mitochondria and nuclei of patients with the inherited, progressive nervous system disease called Friedreich's ataxia (FRDA), says a multicenter research team led by an expert from the University of Pittsburgh Cancer Institute (UPCI).

The findings, described today in PLoS Genetics, shed light on the molecular abnormalities that lead to the disease, as well as point the way to new therapeutic approaches and the development of biomarker blood tests to track its progression.

"In FRDA, mutations in the gene frataxin reduce production of a protein that plays a role in keeping iron levels in balance within mitochondria," explained Bennett Van Houten, Ph.D., Richard M. Cyert Professor of Molecular Oncology and leader of the molecular and cellular cancer biology program at UPCI, and professor, Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine. "Frataxin binds iron and helps build iron-sulfur clusters, which are important constituents of cellular proteins."

"While iron is what allows blood cells to carry oxygen, too much iron is toxic to the body," said Astrid C. Haugen, lead author and program analyst at the National Institute of Environmental Health Sciences (NIEHS), part of the National Institutes of Health (NIH). "Friedreich's ataxia leads to iron overload, setting the stage for cumulative DNA damage that eventually affects patients' nerve and muscle cells."

According to the National Institute of Neurological Disorders and Stroke (NINDS), about 1 out of 50,000 Americans has Friedreich's ataxia. Symptoms appear from 5 to 15 years of age and include ataxia, or gait disturbance, that results from degeneration of nerves in the spinal cord and muscle; muscle wasting; and speech problems. Heart enlargement, arrhythmias, and heart failure are common and often the cause of early death in the most severely affected. Patients typically require wheelchairs within 10 to 20 years after symptoms begin.

For the study, the researchers profiled gene activity in blood samples from FRDA children to search for biomarkers of the disease, as compared to young healthy donors. Those data were compared to blood tests from FRDA adults, and the latter compared to a second group of healthy individuals.

"We saw gene activity patterns that are associated with responses to DNA damage, and our comparisons and follow-up tests showed us that FRDA patients have far more damage than seen in healthy people," said Dr. Van Houten, who noted that everyone has some DNA damage, at various stages of repair, in their cells. "We found gene expression signatures that correlated with frataxin levels, age of disease onset and a standardized measure of patient disability."

"If further testing validates the set of genes and activity profiles as predictive biomarkers, they could be useful in assessing the current status of a patient's illness as well as the response to experimental therapies in clinical trials," he said. "Also, new drug targets might be found in the DNA repair and iron-processing pathways affected by the lack of frataxin, generating much-needed treatment breakthroughs."

The study team includes researchers from NIEHS; NINDS; Durham, N.C.-based Expression Analysis Inc.; Duke University; Université Pierre et Marie Curie, Paris; and Hôpital Pitié-Salpêtrière, Paris.

This work was supported by the NIH Intramural Program and a Bench-to-Bedside award.

About UPCI

As the only NCI-designated comprehensive cancer center in western Pennsylvania, UPCI is a recognized leader in providing innovative cancer prevention, detection, diagnosis, and treatment; bio-medical research; compassionate patient care and support; and community-based outreach services. UPCI investigators are world-renowned for their work in clinical and basic cancer research.

About the University of Pittsburgh School of Medicine

As one of the nation's leading academic centers for biomedical research, the University of Pittsburgh School of Medicine integrates advanced technology with basic science across a broad range of disciplines in a continuous quest to harness the power of new knowledge and improve the human condition. Its Department of Pharmacology & Chemical Biology fosters an intellectual and physical environment in which basic chemical principles are applied to the understanding of cell signaling events with the goal of creating new therapeutic strategies. Driven mainly by the School of Medicine and its affiliates, Pitt has ranked among the top 10 recipients of funding from the National Institutes of Health since 1997 and now ranks fifth in the nation, according to preliminary data for fiscal year 2008. Likewise, the School of Medicine is equally committed to advancing the quality and strength of its medical and graduate education programs, for which it is recognized as an innovative leader, and to training highly skilled, compassionate clinicians and creative scientists well-equipped to engage in world-class research. The School of Medicine is the academic partner of UPMC, which has collaborated with the University to raise the standard of medical excellence in Pittsburgh and to position health care as a driving force behind the region's economy. For more information about the School of Medicine, see

Anita Srikameswaran | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht North and South Cooperation to Combat Tuberculosis
22.03.2018 | Universität Zürich

nachricht Researchers Discover New Anti-Cancer Protein
22.03.2018 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Researchers Discover New Anti-Cancer Protein

An international team of researchers has discovered a new anti-cancer protein. The protein, called LHPP, prevents the uncontrolled proliferation of cancer cells in the liver. The researchers led by Prof. Michael N. Hall from the Biozentrum, University of Basel, report in “Nature” that LHPP can also serve as a biomarker for the diagnosis and prognosis of liver cancer.

The incidence of liver cancer, also known as hepatocellular carcinoma, is steadily increasing. In the last twenty years, the number of cases has almost doubled...

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

Im Focus: Tiny implants for cells are functional in vivo

For the first time, an interdisciplinary team from the University of Basel has succeeded in integrating artificial organelles into the cells of live zebrafish embryos. This innovative approach using artificial organelles as cellular implants offers new potential in treating a range of diseases, as the authors report in an article published in Nature Communications.

In the cells of higher organisms, organelles such as the nucleus or mitochondria perform a range of complex functions necessary for life. In the networks of...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

Latest News

Modular safety concept increases flexibility in plant conversion

22.03.2018 | Trade Fair News

New interactive map shows climate change everywhere in world

22.03.2018 | Earth Sciences

New technologies and computing power to help strengthen population data

22.03.2018 | Earth Sciences

Science & Research
Overview of more VideoLinks >>>