Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Evolution: Crabs go deep to avoid hot water

06.07.2009
King crabs

Researchers from the National Oceanography Centre, Southampton, have drawn together 200 years' worth of oceanographic knowledge to investigate the distribution of a notorious deep-sea giant – the king crab.

The results, published this week in the Journal of Biogeography, reveal temperature as a driving force behind the speciation and radiation of a major seafloor predator; globally, and over tens of millions of years of Earth's history.

In deep seas all over the world, around 100 species of king crabs live largely undiscovered. The fraction that we have found includes some weird and wonderful examples - Paralomis seagrantii has its eight walking legs and claws entirely covered in long fur-like setae; while related group Lithodes megacanthus grows to lengths of 1.5 metres, and has 15-20-cm long defensive spines covering its body.

At temperatures of around 1- 4ºC, these crabs thrive in some of the colder waters on Earth; living and growing very slowly, probably to very old ages. Only in the cooler water towards the poles are king crabs found near the water surface – though temperatures found around some parts of the Antarctic (below 1ºC) are too extreme for their survival.

A paper, published 15 years ago in Nature is thought to show that king crabs evolved from shell-bound hermit crabs - similar to the familiar shoreline animals. Soft-bodied, but shell-free intermediate forms are found only in the shallow waters off Japan, Alaska, and Western Canada.

By looking at 200 years' worth of records from scientific cruises and museum collections, Sally Hall and Sven Thatje from the University of Southampton's School of Ocean and Earth Science at the National Oceanography Centre discovered that the soft-bodied forms can live at temperatures about ten degrees higher than the hard-bodied forms, but that both groups can only reproduce when temperature is between 1ºC up to 13-15ºC.

"It seems that most shallow-water representatives of this family are trapped in the coastal regions of the North Pacific because the higher sea surface temperatures further south prevent them from reproducing successfully and spreading," said Dr Thatje.

In order to leave this geographic bottleneck and spread around the world, the shallow water ancestors of current deep-sea groups had to go deep and adapt to the challenges of life in the deep sea. The process of adaptation to constant low temperatures (1-4ºC) prevailing in the deep sea seems to have narrowed the temperature tolerance range of the crabs where they have emerged to the surface waters in the Southern Hemisphere. With differences of only a couple of degrees in temperature affecting the distribution of the king crab, it is difficult to predict the consequences of range expansion in the warming waters around the Antarctic Peninsular region.

King crabs are of great commercial value, and fisheries are established in high latitude regions of both hemispheres. "Understanding their evolutionary history and ecology is key to supporting sustainable fisheries of these creatures," said research student Sally Hall: "Recent range extensions of king crabs into Antarctica, as well as that of the red king crab Paralithodes camtchaticus in the Barents Sea and along the coast off Norway emphasise the responsiveness of this group to rapid climate change."

This study elucidates temperature as a driving force behind the speciation and radiation of a major seafloor predator globally and over tens of millions of years of Earth's history.

The study has been supported by the National Environment Research Council (UK) through a PhD studentship to Sally Hall, and a Research Grant from the Royal Society awarded to Sven Thatje.

Contact information:

For more information contact the NOCS Press Officer Dr Rory Howlett on +44 (0)23 8059 8490 Email: r.howlett@noc.soton.ac.uk

Images are available from the NOCS Press Office (Tel. 023 8059 6100).

Scientist contacts
Dr Sven Thatje: email sven.thatje@noc.soton.ac.uk
Sally Hall: email smh57@noc.soton.ac.uk; telephone +44 (0) 23 8059 3559
Publication: Hall, S. & Thatje, S. (July 2009). Global bottlenecks in the distribution of marine Crustacea: temperature constraints in the biogeography of the family Lithodidae. Journal of Biogeography.

The National Oceanography Centre, Southampton is the UK's focus for ocean science. It is one of the world's leading institutions devoted to research, teaching and technology development in ocean and earth science. Over 500 research scientists, lecturing, support and seagoing staff are based at the centre's purpose-built waterside campus in Southampton along with over 700 undergraduate and postgraduate students.

The National Oceanography Centre, Southampton is a collaboration between the University of Southampton and the Natural Environment Research Council. The NERC royal research ships RRS James Cook and RRS Discovery are based at NOCS as is the National Marine Equipment Pool which includes Autosub and Isis, two of the world's deepest diving research vehicles.

Dr. Rory Howlett | EurekAlert!
Further information:
http://www.soton.ac.uk

More articles from Life Sciences:

nachricht Cryo-electron microscopy achieves unprecedented resolution using new computational methods
24.03.2017 | DOE/Lawrence Berkeley National Laboratory

nachricht How cheetahs stay fit and healthy
24.03.2017 | Forschungsverbund Berlin e.V.

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>