Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Evolution: Crabs go deep to avoid hot water

06.07.2009
King crabs

Researchers from the National Oceanography Centre, Southampton, have drawn together 200 years' worth of oceanographic knowledge to investigate the distribution of a notorious deep-sea giant – the king crab.

The results, published this week in the Journal of Biogeography, reveal temperature as a driving force behind the speciation and radiation of a major seafloor predator; globally, and over tens of millions of years of Earth's history.

In deep seas all over the world, around 100 species of king crabs live largely undiscovered. The fraction that we have found includes some weird and wonderful examples - Paralomis seagrantii has its eight walking legs and claws entirely covered in long fur-like setae; while related group Lithodes megacanthus grows to lengths of 1.5 metres, and has 15-20-cm long defensive spines covering its body.

At temperatures of around 1- 4ºC, these crabs thrive in some of the colder waters on Earth; living and growing very slowly, probably to very old ages. Only in the cooler water towards the poles are king crabs found near the water surface – though temperatures found around some parts of the Antarctic (below 1ºC) are too extreme for their survival.

A paper, published 15 years ago in Nature is thought to show that king crabs evolved from shell-bound hermit crabs - similar to the familiar shoreline animals. Soft-bodied, but shell-free intermediate forms are found only in the shallow waters off Japan, Alaska, and Western Canada.

By looking at 200 years' worth of records from scientific cruises and museum collections, Sally Hall and Sven Thatje from the University of Southampton's School of Ocean and Earth Science at the National Oceanography Centre discovered that the soft-bodied forms can live at temperatures about ten degrees higher than the hard-bodied forms, but that both groups can only reproduce when temperature is between 1ºC up to 13-15ºC.

"It seems that most shallow-water representatives of this family are trapped in the coastal regions of the North Pacific because the higher sea surface temperatures further south prevent them from reproducing successfully and spreading," said Dr Thatje.

In order to leave this geographic bottleneck and spread around the world, the shallow water ancestors of current deep-sea groups had to go deep and adapt to the challenges of life in the deep sea. The process of adaptation to constant low temperatures (1-4ºC) prevailing in the deep sea seems to have narrowed the temperature tolerance range of the crabs where they have emerged to the surface waters in the Southern Hemisphere. With differences of only a couple of degrees in temperature affecting the distribution of the king crab, it is difficult to predict the consequences of range expansion in the warming waters around the Antarctic Peninsular region.

King crabs are of great commercial value, and fisheries are established in high latitude regions of both hemispheres. "Understanding their evolutionary history and ecology is key to supporting sustainable fisheries of these creatures," said research student Sally Hall: "Recent range extensions of king crabs into Antarctica, as well as that of the red king crab Paralithodes camtchaticus in the Barents Sea and along the coast off Norway emphasise the responsiveness of this group to rapid climate change."

This study elucidates temperature as a driving force behind the speciation and radiation of a major seafloor predator globally and over tens of millions of years of Earth's history.

The study has been supported by the National Environment Research Council (UK) through a PhD studentship to Sally Hall, and a Research Grant from the Royal Society awarded to Sven Thatje.

Contact information:

For more information contact the NOCS Press Officer Dr Rory Howlett on +44 (0)23 8059 8490 Email: r.howlett@noc.soton.ac.uk

Images are available from the NOCS Press Office (Tel. 023 8059 6100).

Scientist contacts
Dr Sven Thatje: email sven.thatje@noc.soton.ac.uk
Sally Hall: email smh57@noc.soton.ac.uk; telephone +44 (0) 23 8059 3559
Publication: Hall, S. & Thatje, S. (July 2009). Global bottlenecks in the distribution of marine Crustacea: temperature constraints in the biogeography of the family Lithodidae. Journal of Biogeography.

The National Oceanography Centre, Southampton is the UK's focus for ocean science. It is one of the world's leading institutions devoted to research, teaching and technology development in ocean and earth science. Over 500 research scientists, lecturing, support and seagoing staff are based at the centre's purpose-built waterside campus in Southampton along with over 700 undergraduate and postgraduate students.

The National Oceanography Centre, Southampton is a collaboration between the University of Southampton and the Natural Environment Research Council. The NERC royal research ships RRS James Cook and RRS Discovery are based at NOCS as is the National Marine Equipment Pool which includes Autosub and Isis, two of the world's deepest diving research vehicles.

Dr. Rory Howlett | EurekAlert!
Further information:
http://www.soton.ac.uk

More articles from Life Sciences:

nachricht Wintering ducks connect isolated wetlands by dispersing plant seeds
22.02.2017 | Utrecht University

nachricht Warming ponds could accelerate climate change
21.02.2017 | University of Exeter

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

NASA's fermi finds possible dark matter ties in andromeda galaxy

22.02.2017 | Physics and Astronomy

Wintering ducks connect isolated wetlands by dispersing plant seeds

22.02.2017 | Life Sciences

Impacts of mass coral die-off on Indian Ocean reefs revealed

21.02.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>