Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


European researchers harness unique properties of boron to develop new drugs and diagnostics

Researchers are on the verge of unleashing the power of the element boron in a new generation of drugs and therapies, as decades of research begins to bear fruit. Boron has to date far been one of biology's best kept secrets, but is now attracting fast growing research interest and investment from the pharmaceutical industry in the quest for novel drugs to tackle cancer and infectious diseases, potentially overcoming limitations and side effects of current products.

Europe's response to the challenges and opportunities of boron chemistry in medicine was discussed at a recent workshop, Biobor - Exploring New Opportunities Of Boron Chemistry Towards Medicine.

According to its convenor Zbigniew Lesnikowski, the ESF workshop set the stage for a new era of boron therapies going beyond the current application in cancer radiotherapy via boron neutron capture therapy (BNCT), in which the element is used to help translate beams of neutrons into radiation that targets tumour cells with less "collateral damage" of surrounding healthy tissue.

"Yes, it became obvious during the workshop that there is now sufficient knowledge and enough compounds to support a broad program of screening in the quest for new antiviral and anticancer drugs containing essential boron components," said Lesnikowski. There was also scope for improving the application of BNCT to cancer, but besides these two therapeutic avenues, boron also has vast potential as the basis for compounds in diagnosis and biosensing, and also for novel bioorganic materials, said Lesnikowski.

The applications in bio sensing, biomaterials, and drug development all spring from the fundamental chemical properties of boron. All life is derived ultimately from the element carbon, which lies next to boron in the periodic table of elements, their respective atomic numbers being six and five. Boron compounds share some similarities with carbon but also have important differences. It is the combination of these similarities and differences that give boron its unique potential in medicine.

The important similarity is that boron, like carbon, combines with hydrogen to form stable compounds that can participate in biochemical reactions and syntheses. The key difference is that these compounds have distinctive geometrical shapes and electronic charge distributions with greater 3D complexity than their carbon based equivalents. As Lesnikowski put it, while organic carbon molecules tend to comprise rings and chains, boron hydrides (compounds comprising mostly boron and hydrogen) are made up of clusters and cages. This 3D structure makes it possible to design molecules with specific charge distributions by varying their internal structure, and this in turn brings the potential to tune how each part of the structure relates to water molecules, and biomolecules present in living organisms - if a component is hydrophobic, meaning it repels water, it is well placed to enter cells by crossing the membrane. If it is hydrophilic, meaning water-loving, it will naturally be soluble in water. The hydrophobic/hydrophilic interactions also affect how a molecule makes contact and communication with target proteins and nucleic acids.

The fact that novel boron compounds will be unfamiliar to life has potential advantages for antibiotic drugs, since pathogens will be less able to develop resistance against them. "Also the kind of interactions would be somehow different from key-lock systems build up in living cell lines in nature for billions of years," said Lesnikowski. "We can thus anticipate that active substances would be less prone to development of resistance," said Lesnikowski. "This is an obvious advantage of boron drugs." While eventually pathogens such as bacteria and viruses are capable of evolving resistance against almost any molecule that attacks them, Lesnikowski believed that it would take longer for this to happen in the case of boron based compounds which would therefore make it easier for humans to remain one step ahead rather than struggling to keep pace as at present.

Apart from lack of knowledge over the potential, development of boron compounds for medicine has been held back until now by the high cost of catalysts and born based intermediate compounds used in the synthesis. Another important recent development therefore was availability of lower cost intermediates in the synthesis processes, according to Lesnikowski.

The ESF workshop Biobor - Exploring New Opportunities Of Boron Chemistry Towards Medicine, was held in May 2008 in Lodz, Poland.

Thomas Lau | alfa
Further information:

More articles from Life Sciences:

nachricht First time-lapse footage of cell activity during limb regeneration
25.10.2016 | eLife

nachricht Phenotype at the push of a button
25.10.2016 | Institut für Pflanzenbiochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

First results of NSTX-U research operations

26.10.2016 | Physics and Astronomy

UCI and NASA document accelerated glacier melting in West Antarctica

26.10.2016 | Earth Sciences

Ice shelf vibrations cause unusual waves in Antarctic atmosphere

25.10.2016 | Earth Sciences

More VideoLinks >>>