Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Erythropoietin counteracts breast cancer treatment with herceptin

16.11.2010
Researchers find erythropoiesis-stimulating drugs cut response to HER2 targeted therapy

Red-blood-cell-boosting drugs used to treat anemia may undermine breast cancer treatment with Herceptin, a targeted therapy that blocks the cancer-promoting HER2 protein, researchers from The University of Texas MD Anderson Cancer Center report in the Nov. 16 edition of Cancer Cell.

"Our research indicates when the two drugs were used at the same time, Herceptin was less effective," said study senior author Zhen Fan, M.D., associate professor in MD Anderson's Department of Experimental Therapeutics.

Natural erythropoietin (EPO) controls the body's red blood cell production. Manufactured versions called erythropoietin-stimulating agents or recombinant erythropoietin treat anemia caused by kidney failure and cancer treatment.

"Recombinant erythropoietin is a great drug, and it's saved many lives," Fan said. "Some studies, however, have shown that the drug has effects on cancer cells. We wanted to see if recombinant erythropoietin thwarts Herceptin, based on our understanding of how the two drugs work."

The researchers tested their hypothesis using breast cancer mouse models, then followed up with laboratory experiments on cancer cell lines to work out the molecular details. A retrospective case control study of 111 breast cancer patients supported their findings from the mouse studies.

Human epidermal growth factor receptor-2 (HER2) is overexpressed in 25-30 percent of breast cancers. The drug trastuzumab, known commercially as Herceptin, is an antibody designed to block HER2. Because resistance develops, only about a third of HER2-positive patients respond to the drug.

The presence of functional erythropoietin receptors on HER2-positive breast cancer could be one resistance mechanism, Fan said.

"The whole idea with targeted therapy against the HER2 protein is to shut off the downstream molecular activity launched by HER2," Fan said. "Erythropoietin can activate similar downstream pathways if its receptor is expressed on cancer cells, causing antagonism between the two drugs."

Fan and colleagues demonstrate that when erythropoietin connects with its receptor protein (EpoR), it launches a chain of events that activates Src, a crucial component of a pathway that trastuzumab blocks. It also shuts down a well-known tumor-suppressing gene called PTEN that is believed to be important to trastuzumab's activity against cancer cells.

There is controversy in academic circles about the role and function of EpoR in cancer cells and other types of cells not involved in blood production. It's important to note, Fan said, the team found no evidence that recombinant erythropoietin alone promotes cancer growth.

Tracking down the details

In three HER2-positive breast cancer cell lines, trastuzumab inhibited cell survival and proliferation, while recombinant erythropoietin stimulated cell survival and growth. When the three lines were treated together with trastuzumab and the anemia drug, cell survival increased from 58 percent to 80 percent, 57 percent to 77 percent, and 34 percent to 57.5 percent, respectively.

Two HER2-positive breast cancer cell types were introduced to mice, who then either received mock treatment, trastuzumab only, erythropoietin only or both drugs. Tumors treated with trastuzumab either shrank or stopped growing, with average tumor volume close to zero after 50 days in one cell line and barely registering in another. Growth of tumors treated with erythropoietin closely tracked the control group, increasing rapidly to an average volume of 1,500 cubic millimeters in one line and 600 mm3 in another. Tumors treated with both drugs grew more slowly to about 700 mm3 and 300 mm3.

Improved patient survival in small study

In a retrospective case-control study of patients with HER2-positive breast cancer that had spread, the team compared overall survival and progression-free survival between a group of 37 patients who received trastuzumab plus chemotherapy and recombinant erythropoietin to a matched control group of 74 whose cancer was treated the same way but who received no EPO.

A statistically significant difference in progression-free survival emerged at one year, with 40 percent of the control group having stable disease compared with 19 percent of the erythropoietin group. Overall progression-free survival differences across two years were not statistically significant.

The control group also had better overall survival than the erythropoietin group that was statistically significant in an analysis of multiple variables.

Fan emphasized that clinical findings should be interpreted with caution because the study was small and retrospective. Patients who received erythropoietin might have been sicker than the patients not treated with erythropoietin. Their findings need to be confirmed by larger clinical studies.

"We're expanding this study to include other types of cancer," Fan said. "Of course, different types of cancers are treated with different types of targeted therapies. We need to design our studies using different targeting agents than Herceptin to study whether erythropoietin can antagonize these drugs," Fan said.

Looking forward, Fan said, researchers need to find out why and how some cancer cells express the receptor protein for erythropoietin, and to what extent cancer cells express EpoR. "Recombinant erythropoietin helps to improve a patient's general condition without the need for a blood transfusion," Fan said. "If we can figure out how the expression of the erythropoietin receptor is regulated in cancer cells, we may come up with some new strategies to allow cancer patients to receive the drug for their anemia and fatigue without compromising their treatment with novel targeted therapies, such as anti-HER2 therapy with Herceptin."

The study was funded by a grant from the National Cancer Institute, research awards by the Breast Cancer Research Foundation, and by MD Anderson's Cancer Center Support Grant from from the NCI.

Co-authors with Fan, all from MD Anderson, are first author Ke Liang, Yang Lu, Xinqun Li, M.D., Ph.D., and John Mendelsohn, M.D., all of the department of Experimental Therapeutics; Francisco Esteva, M.D., Ph.D., Giampaolo Bianchini, M.D., Ching-Yi Yang and Gabriel Hortobagyi, M.D., all of the Department of Breast Medical Oncology; Yong Li, Ph.D., Constance Albarracin, M.D., Ph.D., of the Department of Pathology; Katherine Stemke-Hale, Ph.D., and Gordon Mills, M.D., Ph.D., of the Department of Systems Biology; and Chun-Te Chen and Mien-Chie Hung, M.D., Ph.D., of the Department of Molecular and Cellular Oncology.

Scott Merville | EurekAlert!
Further information:
http://www.mdanderson.org

More articles from Life Sciences:

nachricht A Map of the Cell’s Power Station
18.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht On the way to developing a new active ingredient against chronic infections
21.08.2017 | Deutsches Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Nagoya physicists resolve long-standing mystery of structure-less transition

21.08.2017 | Materials Sciences

Chronic stress induces fatal organ dysfunctions via a new neural circuit

21.08.2017 | Health and Medicine

Scientists from the MSU studied new liquid-crystalline photochrom

21.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>