Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

In an Enzyme Critical for Life, X-Ray Emission Cracks Mystery Atom

21.11.2011
Like a shadowy character just hidden from view, a mystery atom in the middle of a complex enzyme called nitrogenase had long hindered scientists’ ability to study the enzyme fully.

But now an international team of scientists led by Serena DeBeer, Cornell assistant professor of chemistry and chemical biology, has pulled back the curtain using powerful synchrotron spectroscopy and computational modeling to reveal carbon as the once-elusive atom.

The research was published online Nov. 17 in the journal Science.

“For chemists, one of the first steps you want to be able to take is to actually model the site,” said DeBeer. “It turns out that the chemistry of how this cluster behaves will be different depending on what atom is in the middle. This is the first step toward trying to unravel its mechanism.”

Why nitrogenase? In nature, all life requires the element nitrogen from the atmosphere to form amino acids and build proteins. Bacteria need to convert nitrogen to ammonia as a precursor to more complex biosynthetic processes. The enzyme that catalyzes all this is nitrogenase, and it does it by breaking one of the strongest bonds in chemistry – the nitrogen triple bond.

The chemical industry has figured out how to convert nitrogen to ammonia in high-temperature and high-pressure industrial environments. There’s a fascination with understanding how the enzyme makes this same process work in nature, DeBeer said.

DeBeer and colleagues honed in on a subset of atoms in the relatively large enzyme, called the iron-molybdenum cofactor, which was thought to be the site where dinitrogen (N2) gets converted to ammonia, and where the mystery atom is situated inside.

The team used a method called X-ray emission spectroscopy (XES) at the Stanford Synchrotron Radiation Light Source to excite the electrons in the cofactor’s iron cluster and to watch how electrons refilled the spots, called “holes,” they left behind. The holes were sometimes filled by an electron belonging to a neighboring atom – emitting X-ray signatures with distinct ionization potentials that would distinguish between different kinds of atoms.

This was how it was revealed that the cofactor contained a carbon atom, rather than a nitrogen or an oxygen atom, that was bound to the iron atoms in the cluster.

The paper’s first author is Kyle M. Lancaster, a Cornell postdoctoral associate in chemistry. DeBeer’s collaborators are at the University of Bonn in Germany, University of California-Irvine, Max Planck Institute and the SLAC National Accelerator Laboratory at Stanford.

The research was supported by Cornell, the University of Bonn, the Max Planck Society and the National Institutes of Health.

Blaine Friedlander | Newswise Science News
Further information:
http://www.cornell.edu

More articles from Life Sciences:

nachricht Fingerprint' technique spots frog populations at risk from pollution
27.03.2017 | Lancaster University

nachricht Parallel computation provides deeper insight into brain function
27.03.2017 | Okinawa Institute of Science and Technology (OIST) Graduate University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Northern oceans pumped CO2 into the atmosphere

27.03.2017 | Earth Sciences

Fingerprint' technique spots frog populations at risk from pollution

27.03.2017 | Life Sciences

Big data approach to predict protein structure

27.03.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>