Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

English ivy may give sunblock a makeover

20.07.2010
Nanoparticles in ivy may hold the key to making sunscreen safer and more effective.

When Mingjun Zhang was watching his son play in the yard, he was hit with a burning question: "What makes the ivy in his backyard cling to the fence so tightly?"

That simple question has led to a pioneering discovery that the tiny particles secreted from ivy rootlets can be used in many breakthrough applications in items such as military technologies, medical adhesives and drug delivery, and, most recently, sun-block.

Zhang, an associate professor of biomedical engineering at the University of Tennessee, Knoxville, along with his research team and collaborators, has found that ivy nanoparticles may protect skin from UV radiation at least four times better than the metal-based sunblocks found on store shelves today.

"The discovery of ivy nanoparticles' application to sunscreen was triggered by a real need. While hearing a talk at a conference about toxicity concerns in the use of metal-based nanoparticles in sunscreen, I was wondering, 'Why not try naturally occurring organic nanoparticles?'" Zhang said.

Zhang speculated the greenery's hidden power lay within a yellowish material secreted by the ivy for surface climbing. He placed this material onto a silicon wafer and examined it under an atomic force microscope and was surprised by what they found -- lots of nanoparticles, tiny particles 1,000 times thinner than the diameter of a human hair. The properties of these tiny bits create the ability for the vine leaves to hold almost 2 million more times than its weight. It also has the ability to soak up and disperse light which is integral to sunscreens.

"Nanoparticles exhibit unique physical and chemical properties due to large surface-to-volume ratio which allows them to absorb and scatter light," Zhang said. "Titanium dioxide and zinc oxide are currently used for sunscreen for the same reason, but the ivy nanoparticles are more uniform than the metal-based nanoparticles, and have unique material properties, which may help to enhance the absorption and scattering of light, and serve better as a sun-blocker."

The team's study indicates that ivy nanoparticles can improve the extinction of ultraviolet light at least four times better than its metal counterparts. Furthermore, the metal-based sunscreens used today can pose health hazards. Zhang notes some studies have shown that the small-scale metal oxides in sunscreen can wind up in organs such as the liver or brain.

Ivy nanoparticles, on the other hand, exhibit better biocompatibility with humans and the environment. The team's studies indicate that the ivy nanoparticles were less toxic to mammalian cells, have a limited potential to penetrate through human skin, and are easily biodegradable.

"In general, it is not a good idea to have more metal-based nanoparticles for cosmetic applications. They are a significant concern for the environment. Naturally occurring nanoparticles originated from plants seem to be a better choice, especially since they have been demonstrated to be less toxic and easily biodegradable," Zhang said.

Sunscreens made with ivy nanoparticles may not need to be reapplied after swimming. That's because the plant's nanoparticles are a bit more adhesive so sunscreens made with them may not wash off as easily as traditional sunscreens. And while sunscreens made with metal-based nanoparticles give the skin a white tinge, sunscreens made with ivy nanoparticles are virtually invisible when applied to the skin.

Zhang worked with assistant professor Zhili Zhang, graduate student Lijin Xia, and post-doctoral research associates Scott Lenaghan and Quanshui Li in the Department of Mechanical, Aerospace and Biomedical Engineering.

Whitney Holmes | EurekAlert!
Further information:
http://www.utk.edu

More articles from Life Sciences:

nachricht Researchers identify potentially druggable mutant p53 proteins that promote cancer growth
09.12.2016 | Cold Spring Harbor Laboratory

nachricht Plant-based substance boosts eyelash growth
09.12.2016 | Fraunhofer-Institut für Angewandte Polymerforschung IAP

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>