Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

English ivy may give sunblock a makeover

20.07.2010
Nanoparticles in ivy may hold the key to making sunscreen safer and more effective.

When Mingjun Zhang was watching his son play in the yard, he was hit with a burning question: "What makes the ivy in his backyard cling to the fence so tightly?"

That simple question has led to a pioneering discovery that the tiny particles secreted from ivy rootlets can be used in many breakthrough applications in items such as military technologies, medical adhesives and drug delivery, and, most recently, sun-block.

Zhang, an associate professor of biomedical engineering at the University of Tennessee, Knoxville, along with his research team and collaborators, has found that ivy nanoparticles may protect skin from UV radiation at least four times better than the metal-based sunblocks found on store shelves today.

"The discovery of ivy nanoparticles' application to sunscreen was triggered by a real need. While hearing a talk at a conference about toxicity concerns in the use of metal-based nanoparticles in sunscreen, I was wondering, 'Why not try naturally occurring organic nanoparticles?'" Zhang said.

Zhang speculated the greenery's hidden power lay within a yellowish material secreted by the ivy for surface climbing. He placed this material onto a silicon wafer and examined it under an atomic force microscope and was surprised by what they found -- lots of nanoparticles, tiny particles 1,000 times thinner than the diameter of a human hair. The properties of these tiny bits create the ability for the vine leaves to hold almost 2 million more times than its weight. It also has the ability to soak up and disperse light which is integral to sunscreens.

"Nanoparticles exhibit unique physical and chemical properties due to large surface-to-volume ratio which allows them to absorb and scatter light," Zhang said. "Titanium dioxide and zinc oxide are currently used for sunscreen for the same reason, but the ivy nanoparticles are more uniform than the metal-based nanoparticles, and have unique material properties, which may help to enhance the absorption and scattering of light, and serve better as a sun-blocker."

The team's study indicates that ivy nanoparticles can improve the extinction of ultraviolet light at least four times better than its metal counterparts. Furthermore, the metal-based sunscreens used today can pose health hazards. Zhang notes some studies have shown that the small-scale metal oxides in sunscreen can wind up in organs such as the liver or brain.

Ivy nanoparticles, on the other hand, exhibit better biocompatibility with humans and the environment. The team's studies indicate that the ivy nanoparticles were less toxic to mammalian cells, have a limited potential to penetrate through human skin, and are easily biodegradable.

"In general, it is not a good idea to have more metal-based nanoparticles for cosmetic applications. They are a significant concern for the environment. Naturally occurring nanoparticles originated from plants seem to be a better choice, especially since they have been demonstrated to be less toxic and easily biodegradable," Zhang said.

Sunscreens made with ivy nanoparticles may not need to be reapplied after swimming. That's because the plant's nanoparticles are a bit more adhesive so sunscreens made with them may not wash off as easily as traditional sunscreens. And while sunscreens made with metal-based nanoparticles give the skin a white tinge, sunscreens made with ivy nanoparticles are virtually invisible when applied to the skin.

Zhang worked with assistant professor Zhili Zhang, graduate student Lijin Xia, and post-doctoral research associates Scott Lenaghan and Quanshui Li in the Department of Mechanical, Aerospace and Biomedical Engineering.

Whitney Holmes | EurekAlert!
Further information:
http://www.utk.edu

More articles from Life Sciences:

nachricht The birth of a new protein
20.10.2017 | University of Arizona

nachricht Building New Moss Factories
20.10.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>