Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The end of a dogma: Bipolar cells generate action potentials

13.12.2012
To make information transmission to the brain reliable, the retina first has to “digitize” the image.

Until now, it was widely believed that this step takes place in the retinal ganglion cells, the output neurons of the retina. Scientists in the lab of Thomas Euler at the University of Tübingen, the Werner Reichardt Centre for Integrative Neuroscience and the Bernstein Center Tübingen were now able to show that already bipolar cells can generate “digital” signals.


Image: Tom Baden, 2012

At least three types of mouse BC showed clear evidence of fast and stereotypic action potentials, so called “spikes”. These results show that the retina is by no means as well understood as is commonly believed.

The retina in our eyes is not just a sheet of light sensors that – like a camera chip – faithfully transmits patterns of light to the brain. Rather, it performs complex computations, extracting several features from the visual stimuli, e.g., whether the light intensity at a certain place increases or decreases, in which direction a light source moves or whether there is an edge in the image. To transmit this information reliably across the optic nerve - acting as a kind of a cable - to the brain, the retina reformats it into a succession of stereotypic action potentials – it “digitizes” it.

Classical textbook knowledge holds that this digital code – similar to the one employed by computers – is applied only in the retina’s ganglion cells, which send the information to the brain. Almost all other cells in the retina were believed to employ graded, analogue signals. But the Tübingen scientists could now show that, in mammals, already the bipolar cells, which are situated right after the photoreceptors within the retinal network, are able to work in a “digital mode” as well.

Using a new experimental technique, Tom Baden and colleagues recorded signals in the synaptic terminals of bipolar cells in the mouse retina. Based on the responses of these cells to simple light stimuli, they were able to separate the neurons into eight different response types. These types closely resembled those expected from physiological and anatomical studies. But surprisingly, the responses of the fastest cell types looked quite different than expected: they were fast, stereotypic and occurred in an all-or-nothing instead of a graded fashion. All these are typical features of action potentials.

Such “digital” signals had occasionally been observed in bipolar cells before, but these were believed to be rare exceptional cases. Studies from the past two years on the fish retina had already cast doubt on the long-held belief that BCs do not spike. The new data from Tübingen clearly show that these “digital” signals are systematically generated in certain types of mammalian bipolar cells. Action potentials allow for much faster and temporally more precise signal transmission than graded potentials, thus offering advantages in certain situations. The results from Tübingen call a widely held dogma of neuroscience into question - and open up many new questions.

The Bernstein Center Tübingen is part of the National Bernstein Network Computational Neuroscience in Germany. With this funding initiative, the German Federal Ministry of Education and Research (BMBF) supports the new discipline of Computational Neuroscience since 2004 with over 150 Mio. €. The network is named after the German physiologist Julius Bernstein (1835–1917).

Text:
Simone Cardoso de Oliveira, Philipp Behrens
Original Publication:
Baden T., Berens P., Bethge M., Euler T. (2012): „Spikes in Mammalian Bipolar Cells Support Temporal Layering of the Inner Retina“. Current Biology: Dec 13, 2012.

http://dx.doi.org/10.1016/j.cub.2012.11.006

Contact:

Dr. Tom Baden
Eberhard Karls Universität Tübingen
Werner Reichardt Centre for Integrative Neuroscience (CIN) / Institute for Ophthalmic Research
Otfried-Mueller-Strasse 25
72076 Tuebingen
Phone: +49 (0)7071 29 84749
thomas.baden@uni-tuebingen.de
Prof. Thomas Euler
Eberhard Karls Universität Tübingen
Werner Reichardt Centre for Integrative Neuroscience (CIN) / Institute for Ophthalmic Research
Otfried-Mueller-Strasse 25
72076 Tuebingen
Phone: +49 (0)7071 29 85028
thomas.euler@cin.uni-tuebingen.de
Weitere Informationen:
http://www.eulerlab.de
Website of the Euler Lab
http://www.bccn-tuebingen.de
Bernstein Center Tübingen
http://www.cin.uni-tuebingen.de
Werner Reichardt Centre for Integrative Neuroscience
http://www.uni-tuebingen.de
University of Tübingen
http://www.nncn.de
National Bernstein Network Computational Neuroscience

Dr. Simone Cardoso de Oliveira | idw
Further information:
http://www.nncn.de/

More articles from Life Sciences:

nachricht New Technique Maps Elusive Chemical Markers on Proteins
03.07.2015 | Salk Institute for Biological Studies

nachricht New approach to targeted cancer therapy
03.07.2015 | CECAD - Cluster of Excellence at the University of Cologne

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Viaducts with wind turbines, the new renewable energy source

Wind turbines could be installed under some of the biggest bridges on the road network to produce electricity. So it is confirmed by calculations carried out by a European researchers team, that have taken a viaduct in the Canary Islands as a reference. This concept could be applied in heavily built-up territories or natural areas with new constructions limitations.

The Juncal Viaduct, in Gran Canaria, has served as a reference for Spanish and British researchers to verify that the wind blowing between the pillars on this...

Im Focus: X-rays and electrons join forces to map catalytic reactions in real-time

New technique combines electron microscopy and synchrotron X-rays to track chemical reactions under real operating conditions

A new technique pioneered at the U.S. Department of Energy's Brookhaven National Laboratory reveals atomic-scale changes during catalytic reactions in real...

Im Focus: Iron: A biological element?

Think of an object made of iron: An I-beam, a car frame, a nail. Now imagine that half of the iron in that object owes its existence to bacteria living two and a half billion years ago.

Think of an object made of iron: An I-beam, a car frame, a nail. Now imagine that half of the iron in that object owes its existence to bacteria living two and...

Im Focus: Thousands of Droplets for Diagnostics

Researchers develop new method enabling DNA molecules to be counted in just 30 minutes

A team of scientists including PhD student Friedrich Schuler from the Laboratory of MEMS Applications at the Department of Microsystems Engineering (IMTEK) of...

Im Focus: Bionic eye clinical trial results show long-term safety, efficacy vision-restoring implant

Patients using Argus II experienced significant improvement in visual function and quality of life

The three-year clinical trial results of the retinal implant popularly known as the "bionic eye," have proven the long-term efficacy, safety and reliability of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

World Conference on Regenerative Medicine in Leipzig: Last chance to submit abstracts until 2 July

25.06.2015 | Event News

World Conference on Regenerative Medicine: Abstract Submission has been extended to 24 June

16.06.2015 | Event News

MUSE hosting Europe’s largest science communication conference

11.06.2015 | Event News

 
Latest News

Siemens receives order for offshore wind power plant in Great Britain

03.07.2015 | Press release

'Déjà vu all over again:' Research shows 'mulch fungus' causes turfgrass disease

03.07.2015 | Agricultural and Forestry Science

Discovery points to a new path toward a universal flu vaccine

03.07.2015 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>