Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Elasticity found to stretch stem cell growth to higher levels

04.10.2010
Findings published in Nature Biotechnology could revolutionize stem cell transplants

One of the major challenges in stem cell transplants is how to obtain sufficient numbers of these remarkably rare cells to put into patients. To help overcome this issue, research from the Centenary Institute, Royal Prince Alfred Hospital and the University of Sydney has found a way to increase the number of blood-forming stem cells when growing them outside of the body.

By using a unique stretchy surface that allows the cells to pull on it, the researchers found they could generate up to three times more stem cells than using current methods alone. Published today in the leading biotechnology journal Nature Biotechnology, lead author Professor John Rasko from the Centenary Institute and RPA Hospital announced these findings could significantly improve the outcomes of stem cell transplants.

Centenary Institute Head of Gene and Stem Cell Therapy Professor John Rasko* said: "Haemopoietic stem cells (HSCs) or blood-forming stem cells play a critical role in creating the blood cells in our body. In order to expand the number of these cells, researchers have attempted to reproduce the unique environment where stem cells live inside the body. In the past we have learnt how to use hormones and drugs to influence these niche environments but less is known about the effect of physical forces.

"Our research has, for the first time, successfully demonstrated that physical forces created by elasticity play a key role in blood-forming cell growth and may mimic the environment of stem cells inside our body. What we've discovered is that blood-forming stem cells like it to be super stretchy because, like a cat on a sofa, they like to pull on their environment."

Dr Jeff Holst#, first author of the publication, combined routinely-used cell hormones with a new elastic-like substance called tropoelastin to coat the plates on which the cells were grown. The study found that growing the stem cells on tropoelastin alone could create as many stem cells as the current hormone-based methods. But the combination of the two produced a super effect with the researchers finding they could create two or three times the number of stem cells than using standard methods on their own.

Professor Tony Weiss^ is a co-author of the Nature Biotechnology paper, and Professor of Biochemistry and Molecular Biotechnology at the University of Sydney. Professor Weiss said: "This is a superb, world class demonstration of leading Australian science. Our inventions are now giving us precise replicas of extraordinarily versatile, natural elastic proteins. By combining our research skills, we have developed a truly impressive technology that we hope will eventually be used to improve the way bone marrow is managed for better medical outcomes."

These findings could be good news for people who receive life-saving stem cell transplants (bone marrow and cord blood transplants) to treat diseased, damaged or faulty stem cells caused by various conditions or treatments such as leukaemia or chemotherapy.

Professor Rasko explained: "By increasing the number of stem cells we can grow outside of the body we could effectively use less bone marrow or cord blood to get the same result or use the same amount to get a much better result. For example, the small quantity of blood used from a cord blood donation often makes it suitable for small children only. Two cord blood donations are usually required to achieve safe transplants in older children or adults. However, in the future, we could use the blood from just one umbilical cord and then increase the number of stem cells to a viable level outside of the body before transplanting these life-saving cells into patients."

For more information on this research or the Centenary Institute visit www.centenary.org.au

*Professor John Rasko is Head of Gene and Stem Cell Therapy at the Centenary Institute. Professor Rasko is also Head, Cell and Molecular Therapies, Royal Prince Alfred Hospital and Professor, Sydney Medical School, University of Sydney.

#Dr Jeff Holst is Head of the Origins of Cancer Laboratory at the Centenary Institute, and is a research fellow at the University of Sydney.

^Professor Tony Weiss is Professor of Biochemistry and Molecular Biotechnology at the University of Sydney. Professor Weiss is also Head of Proteomics and Biotechnology, Molecular Bioscience, University of Sydney.

For the full paper or interviews, please contact Tanya Sarina, Communications Manager, Centenary Institute on:
p: +61 2 9565 6228
m: +61 2 431 029 215
e: t.sarina@centenary.org.au
About the Centenary Institute: The Centenary Institute is an independent medical research institute, affiliated with Royal Prince Alfred Hospital and the University of Sydney. Our unique blend of highly skilled staff and state-of-the art equipment and facilities has allowed us to become world leaders in three critical areas of medical research – cancer, cardiovascular disease and infectious diseases.

Tanya Sarina | EurekAlert!
Further information:
http://www.centenary.org.au

More articles from Life Sciences:

nachricht New type of photosynthesis discovered
17.06.2018 | Imperial College London

nachricht New ID pictures of conducting polymers discover a surprise ABBA fan
17.06.2018 | University of Warwick

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

Im Focus: Photoexcited graphene puzzle solved

A boost for graphene-based light detectors

Light detection and control lies at the heart of many modern device applications, such as smartphone cameras. Using graphene as a light-sensitive material for...

Im Focus: Water is not the same as water

Water molecules exist in two different forms with almost identical physical properties. For the first time, researchers have succeeded in separating the two forms to show that they can exhibit different chemical reactivities. These results were reported by researchers from the University of Basel and their colleagues in Hamburg in the scientific journal Nature Communications.

From a chemical perspective, water is a molecule in which a single oxygen atom is linked to two hydrogen atoms. It is less well known that water exists in two...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

A sprinkle of platinum nanoparticles onto graphene makes brain probes more sensitive

15.06.2018 | Materials Sciences

100 % Organic Farming in Bhutan – a Realistic Target?

15.06.2018 | Ecology, The Environment and Conservation

Perovskite-silicon solar cell research collaboration hits 25.2% efficiency

15.06.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>