Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Einstein researchers develop novel antibiotics that don't trigger resistance

17.03.2009
Bacterial resistance to antibiotics is one of medicine's most vexing challenges. In a study described in Nature Chemical Biology, researchers from Albert Einstein College of Medicine of Yeshiva University are developing a new generation of antibiotic compounds that do not provoke bacterial resistance.

The compounds work against two notorious microbes: Vibrio cholerae, which causes cholera; and E. coli 0157:H7, the food contaminant that each year in the U.S. causes approximately 110,000 illnesses and 50 deaths.

Most antibiotics initially work extremely well, killing more than 99.9% of microbes they target. But through mutation and the selection pressure exerted by the antibiotic, a few bacterial cells inevitably manage to survive, repopulate the bacterial community, and flourish as antibiotic-resistant strains.

Vern L. Schramm, Ph.D., professor and Ruth Merns Chair of Biochemistry at Einstein and senior author of the paper, hypothesized that antibiotics that could reduce the infective functions of bacteria, but not kill them, would minimize the risk that resistance would later develop.

Dr. Schramm's collaborators at Industrial Research Ltd. earlier reported transition state analogues of an enzyme that interferes with "quorum sensing" — the process by which bacteria communicate with each other by producing and detecting signaling molecules known as autoinducers. These autoinducers coordinate bacterial gene expression and regulate processes — including virulence — that benefit the microbial community. Previous studies had shown that bacterial strains defective in quorum sensing cause less-serious infections.

Rather than killing Vibrio cholerae and E. coli 0157:H7, the researchers aimed to disrupt their ability to communicate via quorum sensing. Their target: A bacterial enzyme, MTAN, that is directly involved in synthesizing the autoinducers crucial to quorum sensing. Their plan: Design a substrate to which MTAN would bind much more tightly than to its natural substrate — so tightly, in fact, that the substrate analog permanently "locks up" MTAN and inhibits it from fueling quorum sensing.

To design such a compound, the Schramm lab first formed a picture of an enzyme's transition state — the brief (one-tenth of one-trillionth of a second) period in which a substrate is converted to a different chemical at an enzyme's catalytic site. (Dr. Schramm has pioneered efforts to synthesize transition state analogs that lock up enzymes of interest. One of these compounds, Forodesine, blocks an enzyme that triggers T-cell malignancies and is currently in a phase IIb pivitol clinical study treating cutaneous T-cell leukemia.)

In the Nature Chemical Biology study, Dr. Schramm and his colleagues tested three transition state analogs against the quorum sensing pathway. All three compounds were highly potent in disrupting quorum sensing in both V. cholerae and E. coli 0157:H7. To see whether the microbes would develop resistance, the researchers tested the analogs on 26 successive generations of both bacterial species. The 26th generations were as sensitive to the antibiotics as the first.

"In our lab, we call these agents everlasting antibiotics," said Dr. Schramm. He notes that many other aggressive bacterial pathogens — S. pneumoniae, N. meningitides, Klebsiella pneumoniae, and Staphylococcus aureus — express MTAN and therefore would probably also be susceptible to these inhibitors.

While this study involves three compounds, Dr. Schramm says that his team has now developed more than 20 potent MTAN inhibitors, all of which are expected to be safe for human use: Since MTAN is a bacterial enzyme, blocking it will have no effect on human metabolism.

Other Einstein researchers involved in the study were Jemy Gutierrez, the lead author, Tamara Crowder, Agnes Rinaldo-Matthis, M. C. (Joseph) Ho and Steven C. Almo. The powerful inhibitors were reported in an earlier publication in collaboration with the Carbohydrate Chemistry Team of Industrial Research Ltd., in New Zealand.

The study, "Transition State Analogs of 5' — Methylthioadenosine Nucleosidase Disrupt Quorum Sensing" by Vern L. Schramm et al., appears in the March 8, 2009 online edition of Nature Chemical Biology.

The compounds in this paper have been licensed to Pico Pharmaceuticals, which plans to develop and initiate clinical trials of transition-state analogues. Dr. Schramm is a Pico Pharmaceuticals co-founder and chairman of its scientific advisory board.

Deirdre Branley | EurekAlert!
Further information:
http://www.aecom.yu.edu

More articles from Life Sciences:

nachricht Multi-institutional collaboration uncovers how molecular machines assemble
02.12.2016 | Salk Institute

nachricht Fertilized egg cells trigger and monitor loss of sperm’s epigenetic memory
02.12.2016 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>