Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

More effective method of imaging proteins

06.03.2012
Using a unique facility in the US, researchers at the University of Gothenburg have found a more effective way of imaging proteins. The next step is to film how proteins work – at molecular level.
Mapping the structure of proteins and the work they do in cells could be the key to cures for everything from cancer to malaria. Last year Richard Neutze, professor of biochemistry at the University of Gothenburg, and his research group were among the first in the world to image proteins using very short and intensive X-ray pulses.

In a new study published in Nature Methods, the method has been tested on a new type of protein, with good results.

“To put it simply, we’ve developed a new method of creating incredibly small protein crystals,” says Linda Johansson, doctoral student at the Department of Chemistry and Molecular Biology and lead author of the article. “We’ve also shown that it’s possible to use very small crystals to determine a membrane protein structure.”

Could become standard
There are two major challenges when it comes to imaging proteins: the first is to create the right sized protein crystals, and the second is to irradiate them in such a way that they do not disintegrate. Although Sweden has a facility for synchrotron-generated X-ray radiation – Maxlab in Lund – this type of technology is not sufficiently light-intensive and therefore requires large protein crystals which take several years to produce.
Richard Neutze was one of the researchers to float the idea that it might be possible to image small protein samples using free-electron lasers which emit intensive X-ray radiation in extremely short pulses – shorter than the time it takes light to travel the width of a human hair. This kind of facility has been available in California since 2009, and it is this facility that was used for the study.

“Producing small protein crystals is easier and takes less time, so this method is much faster,” says Linda Johansson. “We hope that it’ll become the standard over the next few years. X-ray free-electron laser facilities are currently under construction in Switzerland, Japan and Germany.”

365,000 images
Carried out by researchers from Sweden, Germany and the US, the study investigated a membrane protein from a type of bacterium that lives off sunlight. It is important to investigate membrane proteins as they transport substances through the cell membrane and thus take care of communication with the cell’s surroundings and other cells.

“We’ve managed to create a model of how this protein looks,” she says. “The next step is to make films where we can look at the various functions of the protein, for example how it moves during photosynthesis.”

A key discovery was that far fewer images are needed to map the protein than previously believed. Using a free-electron laser it is possible to produce around 60 images a second, which meant that the team had over 365,000 images at its disposal. However, just 265 imageswere needed to create a three-dimensional model of the protein.

Bibliographic data
Journal: Nature Methods
Title: Lipidic phase membrane protein serial femtosecond crystallography
Authors: Linda C Johansson, David Arnlund, Thomas A White, Gergely Katona, Daniel P DePonte, Uwe Weierstall, R Bruce Doak, Robert L Shoeman, Lukas Lomb, Erik Malmerberg, Jan Davidsson, Karol Nass, Mengning Liang, Jakob Andreasson, Andrew Aquila, Saša Bajt, Miriam Barthelmess, Anton Barty, Michael J Bogan, Christoph Bostedt, John D Bozek, Carl Caleman, Ryan Coffee, Nicola Coppola, Tomas Ekeberg
Link to article: http://www.nature.com/nmeth/journal/vaop/ncurrent/full/nmeth.1867.html

For more information, please contact. Linda Johansson
E-mail: linda.johansson@chem.gu.se
Telephone: 031-786 32 44

Helena Aaberg | idw
Further information:
http://www.gu.se
http://www.nature.com/nmeth/journal/vaop/ncurrent/full/nmeth.1867.html

More articles from Life Sciences:

nachricht Nanoparticle Exposure Can Awaken Dormant Viruses in the Lungs
16.01.2017 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Cholera bacteria infect more effectively with a simple twist of shape
13.01.2017 | Princeton University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

Im Focus: Newly proposed reference datasets improve weather satellite data quality

UMD, NOAA collaboration demonstrates suitability of in-orbit datasets for weather satellite calibration

"Traffic and weather, together on the hour!" blasts your local radio station, while your smartphone knows the weather halfway across the world. A network of...

Im Focus: Repairing defects in fiber-reinforced plastics more efficiently

Fiber-reinforced plastics (FRP) are frequently used in the aeronautic and automobile industry. However, the repair of workpieces made of these composite materials is often less profitable than exchanging the part. In order to increase the lifetime of FRP parts and to make them more eco-efficient, the Laser Zentrum Hannover e.V. (LZH) and the Apodius GmbH want to combine a new measuring device for fiber layer orientation with an innovative laser-based repair process.

Defects in FRP pieces may be production or operation-related. Whether or not repair is cost-effective depends on the geometry of the defective area, the tools...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Multiregional brain on a chip

16.01.2017 | Power and Electrical Engineering

New technology enables 5-D imaging in live animals, humans

16.01.2017 | Information Technology

Researchers develop environmentally friendly soy air filter

16.01.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>