Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Edible Carbon Dioxide Sponge

26.09.2011
All-natural nanostructures could address pressing environmental problem

A year ago Northwestern University chemists published their recipe for a new class of nanostructures made of sugar, salt and alcohol. Now, the same team has discovered the edible compounds can efficiently detect, capture and store carbon dioxide. And the compounds themselves are carbon-neutral.

The porous crystals -- known as metal-organic frameworks (MOFs) -- are made from all-natural ingredients and are simple to prepare, giving them a huge advantage over other MOFs. Conventional MOFs, which also are effective at adsorbing carbon dioxide, are usually prepared from materials derived from crude oil and often incorporate toxic heavy metals.

Other features of the Northwestern MOFs are they turn red when completely full of carbon dioxide, and the carbon capture process is reversible.

The findings, made by scientists working in the laboratory of Sir Fraser Stoddart, Board of Trustees Professor of Chemistry in the Weinberg College of Arts and Sciences, are published in the Journal of the American Chemical Society (JACS).

“We are able to take molecules that are themselves sourced from atmospheric carbon, through photosynthesis, and use them to capture even more carbon dioxide,” said Ross S. Forgan, a co-author of the study and a postdoctoral fellow in Stoddart’s laboratory. “By preparing our MOFs from naturally derived ingredients, we are not only making materials that are entirely nontoxic, but we are also cutting down on the carbon dioxide emissions associated with their manufacture.”

The main component, gamma-cyclodextrin, is a naturally occurring biorenewable sugar molecule that is derived from cornstarch.

The sugar molecules are held in place by metals taken from salts such as potassium benzoate or rubidium hydroxide, and it is the precise arrangement of the sugars in the crystals that is vital to their successful capture of carbon dioxide.

“It turns out that a fairly unexpected event occurs when you put that many sugars next to each other in an alkaline environment -- they start reacting with carbon dioxide in a process akin to carbon fixation, which is how sugars are made in the first place,” said Jeremiah J. Gassensmith, lead author of the paper and also a postdoctoral fellow in Stoddart’s laboratory. “The reaction leads to the carbon dioxide being tightly bound inside the crystals, but we can still recover it at a later date very simply.”

The fact that the carbon dioxide reacts with the MOF, an unusual occurrence, led to a simple method of detecting when the crystals have reached full capacity. The researchers place an indicator molecule, which detects changes in pH by changing its color, inside each crystal. When the yellow crystals of the MOFs are full of carbon dioxide they turn red.

The simplicity of the new MOFs, allied with their low cost and green credentials, have marked them as candidates for further commercialization. Ronald A. Smaldone, also a postdoctoral fellow in Stoddart’s group and a co-author of the paper, added, “I think this is a remarkable demonstration of how simple chemistry can be successfully applied to relevant problems like carbon capture and sensor technology.”

The National Science Foundation, the U.S. Department of Energy, the Engineering and Physical Sciences Research Council in the U.K., the King Abdulaziz City of Science and Technology (KACST) in Saudi Arabia and the Korea Advanced Institute of Science and Technology (KAIST) in Korea supported the research.

The title of the paper is “Strong and Reversible Binding of Carbon Dioxide in a Green Metal–Organic Framework.” In addition to Stoddart, Gassensmith, Smaldone and Forgan, the other authors of the paper are Hiroyasu Furukawa and Omar M. Yaghi, from UCLA.

Megan Fellman is the science and engineering editor. Contact her at fellman@northwestern.edu

Megan Fellman | EurekAlert!
Further information:
http://www.northwestern.edu
http://www.northwestern.edu/newscenter/stories/2011/09/edible-carbon-dioxide-sponge.html

More articles from Life Sciences:

nachricht Could this protein protect people against coronary artery disease?
17.11.2017 | University of North Carolina Health Care

nachricht Microbial resident enables beetles to feed on a leafy diet
17.11.2017 | Max-Planck-Institut für chemische Ökologie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

Im Focus: Wrinkles give heat a jolt in pillared graphene

Rice University researchers test 3-D carbon nanostructures' thermal transport abilities

Pillared graphene would transfer heat better if the theoretical material had a few asymmetric junctions that caused wrinkles, according to Rice University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

NASA detects solar flare pulses at Sun and Earth

17.11.2017 | Physics and Astronomy

NIST scientists discover how to switch liver cancer cell growth from 2-D to 3-D structures

17.11.2017 | Health and Medicine

The importance of biodiversity in forests could increase due to climate change

17.11.2017 | Studies and Analyses

VideoLinks
B2B-VideoLinks
More VideoLinks >>>