Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Dual catalysts help synthesize alpha-olefins into new organic compounds

Boston College researchers combine two catalytic reactions to produce highly reactive compounds

Boston College chemists have developed a new chemical synthesis methodology that converts chemicals known as alpha-olefins into new organic compounds. By combining a pair of catalytic reactions in sequence, the researchers converted inexpensive and plentiful chemicals into new boron-containing organic compounds prized by researchers.

The team reports in the current online edition of the journal Nature that their advance employed two catalytic reactions – one developed in their Boston College lab and another developed by colleagues at MIT. Combining the two reactions in a sequential process resulted in an unprecedented reaction that offered high levels of purity and selectivity, according to the lead researcher, Boston College Professor of Chemistry James P. Morken.

"We developed the first reaction to convert alpha-olefins into new boron compounds," said Morken. "The second reaction is a palladium-catalyzed reaction that uses a catalyst developed by a team at MIT. Together, these two reactions result in an unprecedented reaction process that works extremely well."

Organic chemists face the challenge of developing new compounds, such as medicines and materials, in a more efficient manner. A driving influence is to produce innovative compounds through simpler, more efficient processes that generate less waste and reduce costs, in particular through the use of readily available chemicals.

The team was surprised by the high level of reactivity in the boron-containing compounds from the first reaction, Morken said. The findings considerably expand the applications of alpha-olefins, a group of organic compounds distinguished by having a double bond at the primary, or alpha, position of their structure. While alpha-olefins are naturally occurring feedstocks that are usually converted into plastics, the increased reactivity that results from adding two boron atoms makes them suitable for wider range of research applications.

Morken said the new methodology should allow for the rapid and efficient production of important compounds from raw chemical feedstocks. As an example, the team used the new process to convert propene gas into phenethylamines, which are an important class of therapeutics, Morken said. In another application, the team used this new method of catalytic reactions to convert another alpha-olefin into pregabalin, which has been used in a variety of pain management drugs.

Morken conducted the research with doctoral students Scott Mlynarski and Chris Schuster, both co-authors of the Nature report.

Ed Hayward | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht Gene therapy shows promise for treating Niemann-Pick disease type C1
27.10.2016 | NIH/National Human Genome Research Institute

nachricht 'Neighbor maps' reveal the genome's 3-D shape
27.10.2016 | International School of Advanced Studies (SISSA)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

How nanoscience will improve our health and lives in the coming years

27.10.2016 | Materials Sciences

OU-led team discovers rare, newborn tri-star system using ALMA

27.10.2016 | Physics and Astronomy

'Neighbor maps' reveal the genome's 3-D shape

27.10.2016 | Life Sciences

More VideoLinks >>>