Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

First Draft Of The Pig: Researchers Sequence Swine Genome

02.11.2009
A global collaborative has produced a first draft of the genome of a domesticated pig, an achievement that will lead to new insights in agriculture, medicine, conservation and evolution.

A red-haired Duroc pig from a farm at the University of Illinois will now be among the growing list of domesticated animals that have had their genomes sequenced. Researchers will announce the achievement Monday (Nov. 2) at a meeting at the Wellcome Trust Sanger Institute, Hinxton, U.K.

“The pig is a unique animal that is important for food and that is used as an animal model for human disease,” said Larry Schook, a University of Illinois professor of biomedical sciences and leader of the sequencing project. “And because the native wild animals are still in existence, it is a really exciting animal to look at to learn about the genomic effects of domestication,” he said.

The Duroc is one of five major breeds used in pork production around the world and is one of about 200 breeds of domesticated pigs. There are also numerous varieties of wild boar, the non-domesticated pigs that are believed to have originated in Eurasia.

The sequencing project was a collaborative effort involving an international team of scientists and genome sequencing centers. The USDA National Institute of Food and Agriculture (NIFA), formerly the Cooperative State Research, Education and Extension Service, provided an initial $10 million in funding, requiring that this be the only pig genome-sequencing project in the world, that it be a public-private partnership and a global collaborative effort, with significant financial or “in-kind” support from the other participating agencies and stakeholders.

The effort cost about $24.3 million, with additional support from the USDA Agricultural Research Service and many other American, Asian and European funders. (See below for a complete list). Another requirement of participation was that the findings be made public, with no proprietary interests allowed.

The draft sequence, which is about 98 percent complete, will allow researchers to pinpoint genes that are useful to pork production or are involved in immunity or other important physiological processes in the pig. It will enhance breeding practices, offer insight into diseases that afflict pigs (and, sometimes, also humans) and will assist in efforts to preserve the global heritage of rare, endangered and wild pigs. It also will be important for the study of human health because pigs are very similar to humans in their physiology, behavior and nutritional needs.

“We are excited to have the swine genome sequence and anticipate this will accelerate the rate of genetic improvement in swine as the bovine sequence is impacting the dairy industry’s genetic gains,” said Steve Kappes, deputy administrator of Animal Production and Protection for the USDA Agricultural Research Service.

“This is a great day for the pig research community,” said professor Alan Archibald, of the Roslin Institute and R(D)SVS at the University of Edinburgh. “When we launched the international pig gene mapping project almost 20 years ago, few if any of us thought a pig genome sequence was attainable or affordable.”

The pig genome sequence is an essential first tool that will allow scientists to delve into the health, science and natural history of the pig, Schook said.

"This is just the end of the beginning of the process,” he said. “Now we’re just beginning to be able to answer a lot of questions about the pig.”

“We are delighted to have contributed to this important collaboration,” said professor Allan Bradley, director of the Wellcome Trust Sanger Institute, which performed most of the sequencing. “This sequence provides a tool of real value in helping the research community to better understand human diseases, in particular by facilitating cardiovascular, pulmonary, gastrointestinal and immunological studies. Thanks to the immediate release of sequence data as it has been produced, the scientific impact of this research is already being felt.”

In addition to the USDA funding, funding and technical support were provided by the Agence Nationale de la Recherche; European Union SABRE; the Institute for Pig Genetics, Netherlands; INRA Genescope, France; Iowa Pork Producers Association; Iowa State University; Korean National Livestock Research Institute; National Institute of Agrobiological Sciences, Japan; National Pork Board, U.S.; North Carolina Pork Council; North Carolina Agricultural Research Service; North Carolina State University; University of Illinois; the UK-based Wellcome Trust Sanger Institute; the Roslin Institute, University of Edinburgh; University of Illinois Livestock Genome Sequencing Initiative; and the UK-based Biotechnology and Biological Sciences Research Council.

Diana Yates | University of Illinois
Further information:
http://www.illinois.edu

More articles from Life Sciences:

nachricht Bacteria as pacemaker for the intestine
22.11.2017 | Christian-Albrechts-Universität zu Kiel

nachricht Researchers identify how bacterium survives in oxygen-poor environments
22.11.2017 | Columbia University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

Corporate coworking as a driver of innovation

22.11.2017 | Business and Finance

PPPL scientists deliver new high-resolution diagnostic to national laser facility

22.11.2017 | Physics and Astronomy

Quantum optics allows us to abandon expensive lasers in spectroscopy

22.11.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>