Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

First Draft Of The Pig: Researchers Sequence Swine Genome

02.11.2009
A global collaborative has produced a first draft of the genome of a domesticated pig, an achievement that will lead to new insights in agriculture, medicine, conservation and evolution.

A red-haired Duroc pig from a farm at the University of Illinois will now be among the growing list of domesticated animals that have had their genomes sequenced. Researchers will announce the achievement Monday (Nov. 2) at a meeting at the Wellcome Trust Sanger Institute, Hinxton, U.K.

“The pig is a unique animal that is important for food and that is used as an animal model for human disease,” said Larry Schook, a University of Illinois professor of biomedical sciences and leader of the sequencing project. “And because the native wild animals are still in existence, it is a really exciting animal to look at to learn about the genomic effects of domestication,” he said.

The Duroc is one of five major breeds used in pork production around the world and is one of about 200 breeds of domesticated pigs. There are also numerous varieties of wild boar, the non-domesticated pigs that are believed to have originated in Eurasia.

The sequencing project was a collaborative effort involving an international team of scientists and genome sequencing centers. The USDA National Institute of Food and Agriculture (NIFA), formerly the Cooperative State Research, Education and Extension Service, provided an initial $10 million in funding, requiring that this be the only pig genome-sequencing project in the world, that it be a public-private partnership and a global collaborative effort, with significant financial or “in-kind” support from the other participating agencies and stakeholders.

The effort cost about $24.3 million, with additional support from the USDA Agricultural Research Service and many other American, Asian and European funders. (See below for a complete list). Another requirement of participation was that the findings be made public, with no proprietary interests allowed.

The draft sequence, which is about 98 percent complete, will allow researchers to pinpoint genes that are useful to pork production or are involved in immunity or other important physiological processes in the pig. It will enhance breeding practices, offer insight into diseases that afflict pigs (and, sometimes, also humans) and will assist in efforts to preserve the global heritage of rare, endangered and wild pigs. It also will be important for the study of human health because pigs are very similar to humans in their physiology, behavior and nutritional needs.

“We are excited to have the swine genome sequence and anticipate this will accelerate the rate of genetic improvement in swine as the bovine sequence is impacting the dairy industry’s genetic gains,” said Steve Kappes, deputy administrator of Animal Production and Protection for the USDA Agricultural Research Service.

“This is a great day for the pig research community,” said professor Alan Archibald, of the Roslin Institute and R(D)SVS at the University of Edinburgh. “When we launched the international pig gene mapping project almost 20 years ago, few if any of us thought a pig genome sequence was attainable or affordable.”

The pig genome sequence is an essential first tool that will allow scientists to delve into the health, science and natural history of the pig, Schook said.

"This is just the end of the beginning of the process,” he said. “Now we’re just beginning to be able to answer a lot of questions about the pig.”

“We are delighted to have contributed to this important collaboration,” said professor Allan Bradley, director of the Wellcome Trust Sanger Institute, which performed most of the sequencing. “This sequence provides a tool of real value in helping the research community to better understand human diseases, in particular by facilitating cardiovascular, pulmonary, gastrointestinal and immunological studies. Thanks to the immediate release of sequence data as it has been produced, the scientific impact of this research is already being felt.”

In addition to the USDA funding, funding and technical support were provided by the Agence Nationale de la Recherche; European Union SABRE; the Institute for Pig Genetics, Netherlands; INRA Genescope, France; Iowa Pork Producers Association; Iowa State University; Korean National Livestock Research Institute; National Institute of Agrobiological Sciences, Japan; National Pork Board, U.S.; North Carolina Pork Council; North Carolina Agricultural Research Service; North Carolina State University; University of Illinois; the UK-based Wellcome Trust Sanger Institute; the Roslin Institute, University of Edinburgh; University of Illinois Livestock Genome Sequencing Initiative; and the UK-based Biotechnology and Biological Sciences Research Council.

Diana Yates | University of Illinois
Further information:
http://www.illinois.edu

More articles from Life Sciences:

nachricht A novel socio-ecological approach helps identifying suitable wolf habitats
17.02.2017 | Universität Zürich

nachricht New, ultra-flexible probes form reliable, scar-free integration with the brain
16.02.2017 | University of Texas at Austin

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Biocompatible 3-D tracking system has potential to improve robot-assisted surgery

17.02.2017 | Medical Engineering

Real-time MRI analysis powered by supercomputers

17.02.2017 | Medical Engineering

Antibiotic effective against drug-resistant bacteria in pediatric skin infections

17.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>