Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


One dozen at a blow: main principle for alloys is discovered

Molecular metallurgists galvanize and gild atoms - RUB scientists hit the title story of "Angewandte Chemie"

They turned out to be steelworkers, running their steel mill in the nanoworld - the chemists around Prof. Dr. Roland A. Fischer (faculty of chemistry of RUB). In the neverland between molecule and metal they discovered a new family of compounds.

The prototype of these new “nano alloys” is a compound containing one central molybdenum atom binding twelve zinc atoms. The icosahedral metal chunk is wrapped into hydrocarbons and therefore surprisingly stable. Its construction is transferable to both other metal centers and other structures. Also the zinc atoms can be exchanged to other metal atoms, even to gold. The scientists report about this simultaneously in the title story of “Angewandte Chemie” and in “Chemistry & Engineering News” of the American Chemical Society.

Galvanized and gilded metal atoms

Gregorius Agricolas famous opus of the year 1556 about mining and metallurgy contained the knowledge of metallurgy at his time. De re metallica would also be a good title for a present chemistry textbook, keeping in mind that four fifth of all elements in the periodic table are metals. Zinc is an exceptional metal for alloys, e.g. brass is just a mixture of copper and zinc. On the atomic level the “alloying” is related to the formation of metal clusters, small chunks made of several metal atoms.

A central metal atom binds other metal atoms leading to a structure which contains exactly the number of corners as atoms bound to the central atom. According to the binding properties of the metal atoms higher structures are formed. “Of particular beauty is the icosahedron, a structure made of twenty equilateral triangles”, says Prof. Fischer. “It represents the highest symmetric platonic body.” The newly discovered molecule exhibits exactly this structure, in which a molybdenum atom holds a dozen of zinc atoms. The scientists discovered that other metal atoms like iron, nickel and platinum can be similarly galvanized in a molecular way, they can be even gilded.

Molecular metallography

The discovered icosahedron (Mo(ZnR)12) is related rather closely to tetrahedral methane (CH4): The ZnR units bound to the central molybdenum behave analogously to the hydrogen atoms in methane. The quantum theoretical analysis of Prof. Dr. Gernot Frenking (Marburg) confirms that the radial bonds between molybdenum and zinc are strong whereas the peripheric zinc atoms bind barely to each other. Therefore zinc can be exchanged by other metals, even by gold.

This matches with the property of metals to form alloys. For a modeling of this phenomenon on a molecular level new synthetic methods are discovered now. The new molecules help to understand the chemical binding properties between metal atoms and are also interesting as precursors for catalysts (SFB 558, project B10;

Prof. Dr. Roland A. Fischer | alfa
Further information:

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>