Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Dodging antibiotic side effects

04.07.2013
New insights into how antibiotics damage human cells suggest novel strategies for making long-term antibiotic use safer

A team of scientists at the Wyss Institute for Biologically Inspired Engineering at Harvard University has discovered why long-term treatment with many common antibiotics can cause harmful side effects—and they have uncovered two easy strategies that could help prevent these dangerous responses. They reported the results in the July 3rd issue of Science Translational Medicine.


Antibiotics cause oxidative stress in cells, which leads to cellular damage. For example, in healthy cells (left), mitochondria, which are labeled yellow here, are long and highly branched. But in cells treated with the antibiotic ciprofloxacin (right), mitochondria are abnormally short and unbranched, and they do not function as well.

Credit: Sameer Kalghatgi and Catherine S. Spina

"Clinical levels of antibiotics can cause oxidative stress that can lead to damage to DNA, proteins and lipids in human cells, but this effect can be alleviated by antioxidants," said Jim Collins, Ph.D., who led the study. Collins, a pioneer of synthetic biology and Core Faculty member at the Wyss Institute, is also the William F. Warren Distinguished Professor at Boston University, where he leads the Center of Synthetic Biology.

Doctors often prescribe antibiotics freely, thinking that they harm bacteria while leaving human tissue unscathed. But over the years reports have piled up about the occasional side effects of various antibiotics, including tendonitis, inner-ear problems and hearing loss, diarrhea, impaired kidney function, and other problems.

Collins suspected these side effects occurred when antibiotics triggered oxidative stress – a condition in which cells produce chemically reactive oxygen molecules that damage the bacteria's DNA and enzymes, as well as the membrane that encloses the cell.

Collins' team had already discovered that antibiotics that kill bacteria do so by triggering oxidative stress in the bacteria. They wondered whether antibiotics caused side effects by triggering oxidative stress in the mitochondria, a bacterium-like organelle that supplies human cells with energy.

Sameer Kalghatgi, Ph.D., a former postdoctoral fellow in Collins' laboratory who is now Senior Plasma Scientist at EP Technologies in Akron, Ohio, and Catherine S. Spina, a M.D./Ph.D. candidate at Boston University and researcher at the Wyss Institute, first tested whether clinical levels of three antibiotics -- ciprofloxacin, ampicillin, kanamycin –- each cause oxidative stress in cultured human cells. They found that all of these drugs were safe after six hours of treatment, but longer-term treatment of about four days caused the mitochondria to malfunction.

Kalghatgi and Spina then did a series of biochemical tests, which showed that the same three antibiotics damaged the DNA, proteins and lipids of cultured human cells — exactly what one would expect from oxidative stress.

The results mean that "doctors should only prescribe antibiotics when they're called for, and patients should only ask for antibiotics when they have a serious bacterial infection," Collins said.

The team also treated mice with the same three antibiotics in mouse-sized doses similar to what patients receive in the clinic. Long-term treatment with each of the three antibiotics damaged the animal's lipids and caused levels of glutathione, one of the body's natural antioxidants, to fall – another sign of oxidative stress.

To make a difference in the clinic, however, the scientists still needed a way to prevent antibiotic-induced oxidative stress – or a way to remediate it as it was occurring. They found both. They were able to prevent oxidative stress by using a bacteriostatic antibiotic – an antibiotic such as tetracycline that stops bacteria from multiplying but doesn't kill them. They could also ease oxidative stress by mopping up chemically reactive oxygen molecules with an FDA-approved antioxidant called N-acetylcysteine, or NAC, that's already used to help treat children with cystic fibrosis.

The new results come on the heels of two other recent breakthroughs on antibiotic treatment from Collins' group – a report in Nature showing that viruses in the gut that infect bacteria harbor genes that confer antibiotic resistance, and another report in Science Translational Medicine showing that silver can boost the effectiveness of many widely used antibiotics.

"Jim and his team are moving at lightning speed toward unlocking the medical mysteries that stand in the way of safe and effective antibiotic treatment," said Don Ingber, M.D., Ph.D., Wyss Institute Founding Director. "Doctors have known for years that antibiotics occasionally cause serious side effects, and Jim's new findings offer not one but two exciting new strategies that could address this long-neglected public health problem."

Next, Collins plans more animal studies to work out the best ways to remediate oxidative stress. But since both bacteriostatic antibiotics and NAC are already FDA-approved, doctors might be using this strategy soon.

"We're interested in seeing if this could be moved toward the clinic," Collins said.

This work was funded by the National Institutes of Health Director's Pioneer Award Program, the Howard Hughes Medical Institute, and the Wyss Institute for Biologically Inspired Engineering at Harvard University. In addition to Collins, Kalghatgi, and Spina, the research team included James C. Costello, Ph.D., a former postdoctoral fellow on Collins' team who's now an Instructor of Medicine at Harvard Medical School; Ruben Morones-Ramirez, Ph.D., a former postdoctoral fellow on Collins' team who is now a professor at Universidad Autónoma de Nuevo Leon in Mexico; Shimyn Slomovic, Ph.D., a postdoctoral fellow on Collins' team; Anthony Molina, Ph.D., Assistant Professor at Wake Forest School of Medicine; Orian Shirihai, Ph.D., Associate Professor at Boston University School of Medicine, and Marc Liesa, Ph.D., a research associate on Shirihai's team at Boston University School of Medicine.

About the Wyss Institute for Biologically Inspired Engineering at Harvard University

The Wyss Institute for Biologically Inspired Engineering at Harvard University uses Nature's design principles to develop bioinspired materials and devices that will transform medicine and create a more sustainable world. Working as an alliance among Harvard's Schools of Medicine, Engineering, and Arts & Sciences, and in partnership with Beth Israel Deaconess Medical Center, Brigham and Women's Hospital, Boston Children's Hospital, Dana Farber Cancer Institute, Massachusetts General Hospital, the University of Massachusetts Medical School, Spaulding Rehabilitation Hospital, Boston University and Tufts University, the Institute crosses disciplinary and institutional barriers to engage in high-risk research that leads to transformative technological breakthroughs. By emulating Nature's principles, Wyss researchers are developing innovative new engineering solutions for healthcare, energy, architecture, robotics, and manufacturing. These technologies are translated into commercial products and therapies through collaborations with clinical investigators, corporate alliances, and new start-ups. The Wyss Institute recently won the prestigious World Technology Network award for innovation in biotechnology.

Dan Ferber | EurekAlert!
Further information:
http://www.wyss.harvard.edu

More articles from Life Sciences:

nachricht Biochemical 'fingerprints' reveal diabetes progression
22.08.2017 | Umea University

nachricht When fish swim in the holodeck
22.08.2017 | University of Vienna

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Molecular volume control

22.08.2017 | Life Sciences

When fish swim in the holodeck

22.08.2017 | Life Sciences

Biochemical 'fingerprints' reveal diabetes progression

22.08.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>