Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

DNA with self-interest - Transposable element conquers new strain of fly

12.05.2015

Transposable elements are so-called “jumping genes”. They are capable of “jumping” from one genome position to another. Why transposable elements exist is subject of controversial debate.

Scientists from the Vetmeduni Vienna found that one of the most important transposable elements, the P-element, has only recently invaded the fly Drosophila simulans.


The P-Element is present in D. melanogaster for more than 60 years. It recently also invaded D. simulans.

Photo: Markus Riedl/Vetmeduni Vienna

The P-element has been present in the closely related species Drosophila melanogaster since the 1950s. The latest findings offer a unique opportunity to study the spread of transposable elements. The results were published in the journal PNAS.

Transposable elements are DNA sequences that are capable of changing their genome position by cut and paste or copy and paste through the enzyme transposase. This ability can be harmful for hosts if transposable elements destroy functioning genes, but it can also bring advantages. From an evolutionary point of view, transposable elements diversify the genome and open up chances for adaptation.

DNA that uses its host

Transposable elements are also called selfish DNA parasites because they spread through their hosts, such as humans, animals, plants as well as bacteria and, thus, provide for their own survival.

Robert Kofler from the Institute of Population Genetics at the Vetmeduni Vienna analysed flies from all over the world. He discovered a phenomenon which was thought to be very rare. Kofler found a transposable element in the fly species Drosophila simulans, the so-called P-element. This transposable element has been absent in D. simulans until recent years.

“The P-element has been spreading rapidly in D. simulans within the past five years. It probably invaded the species via horizontal gene transfer. When exactly the transfer happened, is not clear”, says lead author Kofler.

The DNA sequence was not inherited but directly transferred from one organism to another. “This happened to Drosophila melanogaster more than 60 years ago. The P-element was discovered twice in a new species within one hundred years. Therefore we can assume that transposable elements are transferred across the species faster than we thought.”

A transposable element conquers the world

Although scientists found the P-element in D. simulans flies from South Africa as well as from the USA, they assume that there was only one single transfer event. On average, the South African flies had more P-elements in their genome than flies from Florida. “This indicates that the flies from Florida, collected in 2010, were in an early stage after the transfer event. The samples from South Africa are from 2012. The P-element significantly multiplied within these two years”, Kofler concludes.

High-speed evolution in the lab

Head of the institute, Christian Schlötterer, and his team perform high-speed evolution in the lab. They expose fruit flies to extreme conditions such as heat, cold or UV radiation. Before and after the exposure, they sequence the flies’ genomes. The evolve-and-resequence approach makes it possible to identify genes that have been selected through generations. The researchers now want to study the spread of the P-element under such conditions.

“The discovery of the P-element in Drosophila simulans offers the unique possibility to investigate the way transposable elements are regulated and how they survive. We can accelerate evolution in the lab and, thus, answer this and other questions”, Schlötterer explains.

Service:
The article „ The recent invasion of Drosophila simulans by the P-element”, by Robert Kofler, Tom Hill, Viola Nolte, Andrea Betancourt, and Christian Schlötterer was published in the journal PNAS. doi: http://dx.doi.org/10.1101/013722

About the University of Veterinary Medicine, Vienna

The University of Veterinary Medicine, Vienna in Austria is one of the leading academic and research institutions in the field of Veterinary Sciences in Europe. About 1,300 employees and 2,300 students work on the campus in the north of Vienna which also houses five university clinics and various research sites. Outside of Vienna the university operates Teaching and Research Farms. http://www.vetmeduni.ac.at

Scientific Contact:
Dr. Robert Kofler
Institute of Population Genetics
University of Veterinary Medicine Vienna (Vetmeduni Vienna)
T +43 1 25077-4337
rokofler@gmail.com

Released by:
Susanna Kautschitsch
Science Communication / Public Relations
University of Veterinary Medicine Vienna (Vetmeduni Vienna)
T +43 1 25077-1153
susanna.kautschitsch@vetmeduni.ac.at

Weitere Informationen:

http://www.vetmeduni.ac.at/en/infoservice/presseinformation/press-releases-2015/...

Dr. Susanna Kautschitsch | idw - Informationsdienst Wissenschaft

More articles from Life Sciences:

nachricht Symbiotic bacteria: from hitchhiker to beetle bodyguard
28.04.2017 | Johannes Gutenberg-Universität Mainz

nachricht Nose2Brain – Better Therapy for Multiple Sclerosis
28.04.2017 | Fraunhofer-Institut für Grenzflächen- und Bioverfahrenstechnik IGB

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>