Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

DNA with self-interest - Transposable element conquers new strain of fly

12.05.2015

Transposable elements are so-called “jumping genes”. They are capable of “jumping” from one genome position to another. Why transposable elements exist is subject of controversial debate.

Scientists from the Vetmeduni Vienna found that one of the most important transposable elements, the P-element, has only recently invaded the fly Drosophila simulans.


The P-Element is present in D. melanogaster for more than 60 years. It recently also invaded D. simulans.

Photo: Markus Riedl/Vetmeduni Vienna

The P-element has been present in the closely related species Drosophila melanogaster since the 1950s. The latest findings offer a unique opportunity to study the spread of transposable elements. The results were published in the journal PNAS.

Transposable elements are DNA sequences that are capable of changing their genome position by cut and paste or copy and paste through the enzyme transposase. This ability can be harmful for hosts if transposable elements destroy functioning genes, but it can also bring advantages. From an evolutionary point of view, transposable elements diversify the genome and open up chances for adaptation.

DNA that uses its host

Transposable elements are also called selfish DNA parasites because they spread through their hosts, such as humans, animals, plants as well as bacteria and, thus, provide for their own survival.

Robert Kofler from the Institute of Population Genetics at the Vetmeduni Vienna analysed flies from all over the world. He discovered a phenomenon which was thought to be very rare. Kofler found a transposable element in the fly species Drosophila simulans, the so-called P-element. This transposable element has been absent in D. simulans until recent years.

“The P-element has been spreading rapidly in D. simulans within the past five years. It probably invaded the species via horizontal gene transfer. When exactly the transfer happened, is not clear”, says lead author Kofler.

The DNA sequence was not inherited but directly transferred from one organism to another. “This happened to Drosophila melanogaster more than 60 years ago. The P-element was discovered twice in a new species within one hundred years. Therefore we can assume that transposable elements are transferred across the species faster than we thought.”

A transposable element conquers the world

Although scientists found the P-element in D. simulans flies from South Africa as well as from the USA, they assume that there was only one single transfer event. On average, the South African flies had more P-elements in their genome than flies from Florida. “This indicates that the flies from Florida, collected in 2010, were in an early stage after the transfer event. The samples from South Africa are from 2012. The P-element significantly multiplied within these two years”, Kofler concludes.

High-speed evolution in the lab

Head of the institute, Christian Schlötterer, and his team perform high-speed evolution in the lab. They expose fruit flies to extreme conditions such as heat, cold or UV radiation. Before and after the exposure, they sequence the flies’ genomes. The evolve-and-resequence approach makes it possible to identify genes that have been selected through generations. The researchers now want to study the spread of the P-element under such conditions.

“The discovery of the P-element in Drosophila simulans offers the unique possibility to investigate the way transposable elements are regulated and how they survive. We can accelerate evolution in the lab and, thus, answer this and other questions”, Schlötterer explains.

Service:
The article „ The recent invasion of Drosophila simulans by the P-element”, by Robert Kofler, Tom Hill, Viola Nolte, Andrea Betancourt, and Christian Schlötterer was published in the journal PNAS. doi: http://dx.doi.org/10.1101/013722

About the University of Veterinary Medicine, Vienna

The University of Veterinary Medicine, Vienna in Austria is one of the leading academic and research institutions in the field of Veterinary Sciences in Europe. About 1,300 employees and 2,300 students work on the campus in the north of Vienna which also houses five university clinics and various research sites. Outside of Vienna the university operates Teaching and Research Farms. http://www.vetmeduni.ac.at

Scientific Contact:
Dr. Robert Kofler
Institute of Population Genetics
University of Veterinary Medicine Vienna (Vetmeduni Vienna)
T +43 1 25077-4337
rokofler@gmail.com

Released by:
Susanna Kautschitsch
Science Communication / Public Relations
University of Veterinary Medicine Vienna (Vetmeduni Vienna)
T +43 1 25077-1153
susanna.kautschitsch@vetmeduni.ac.at

Weitere Informationen:

http://www.vetmeduni.ac.at/en/infoservice/presseinformation/press-releases-2015/...

Dr. Susanna Kautschitsch | idw - Informationsdienst Wissenschaft

More articles from Life Sciences:

nachricht Biofuel produced by microalgae
28.02.2017 | Tokyo Institute of Technology

nachricht Decoding the genome's cryptic language
27.02.2017 | University of California - San Diego

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Safe glide at total engine failure with ELA-inside

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded after a glide flight with an Airbus A320 in ditching on the Hudson River. All 155 people on board were saved.

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded...

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Cells adapt ultra-rapidly to zero gravity

28.02.2017 | Health and Medicine

An Atom Trap for Water Dating

28.02.2017 | Earth Sciences

New pop-up strategy inspired by cuts, not folds

27.02.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>