Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New DNA method makes it easier to trace criminals

29.10.2009
DNA samples often convict criminals. But many of today's forensic tests are so polluted by soil, tobacco and food remains, for example, that they can not be used.

Now researchers at Lund University in Sweden, working together with the Swedish National Laboratory of Forensic Science, SKL, have improved a critical part of the analysis process. The first findings, published in the latest issue of the journal Biotechniques, indicate that the new method strengthens the DNA analysis so that previously negative samples yield positive and usable DNA profiles.

"The results are overwhelming. In my study I selected 32 truly difficult samples from the SKL archive, that is, with few cells, little DNA, and many so-called inhibitors, meaning lots of junk. With current methods it was impossible to get acceptable DNA profiles from any of them. But with the new method, 28 of the samples yielded more usable DNA profiles," says Johannes Hedman, an industrial doctoral candidate from SKL doing research at the Faculty of Engineering, Lund University.

Genetic information has become more and more common in forensic analyses. The analysis flow usually starts with taking a sample with a swab from a drinking glass or a blood spot, for example. The cells from the swab are then dissolved in water, and the DNA is extracted.

In forensics all over the world, much work has been done to improve the taking and handling of samples.

"The DNA analysis, on the other hand, has been something of a black box, since it is purchased as a finished product. No one has tried to improve it to be able to deal with dirty samples. But this is absolutely crucial, since the samples often have extremely small amounts of DNA. In this phase you copy certain parts of the DNA strands and then obtain a DNA profile that is unique to each person.

In the copying step, I have optimized the chemical environment and replaced a key enzyme, a so-called DNA polymerase. This yields a clearer genetic footprint, a DNA profile, to work with," explains Johannes Hedman. He has also devised a new mathematical model that makes it easy to interpret the DNA analysis.

If the copying phase is improved, stronger DNA evidence can be shown from crime scenes that today provide only partial or entirely blank DNA profiles. In other words, the chances are greater that a person can be found and linked to a particular crime.

The reason Johannes Hedman wound up at Lund is the fact that Peter Rådström, a professor of microbiological engineering, has been working

since the late 1980s to improve DNA-based infection diagnostics and microbiological analyses for food. SKL was eager to find out whether these research findings could be applied to improving forensic DNA analysis.

"This collaboration opens new vistas for both SKL and Lund University, and we hope to be able to continue to work together with Peter Rådström's team. We have truly seen cross-fertilization," says Birgitta Rasmusson, research director at SKL.

Read the article here:
http://www.biotechniques.com/multimedia/archive/00069/BTN_A_000113256
_O_69111a.pdf
For more information, please contact Johannes Hedman, doctoral candidate in microbiological engineering and senior molecular biologist
at SKL, phone: +46 (0)70-601 93 71, johannes.hedman@tmb.lth.se, Peter
Rådström, professor of microbiological enineering, phone: +46 (0)46-222 34 12, Peter.Radstrom@tmb.lth.se, Ricky Ansell, expert
(DNA), SKL, phone: +46 (0)13 - 24 14 35, ricky.ansell@skl.polisen.se or Birgitta Rasmusson, research director, SKL, phone: +46 (0)13- 24 16

25, birgitta.rasmusson@skl.polisen.se

Kristina Lindgärde | idw
Further information:
http://www.vr.se

More articles from Life Sciences:

nachricht New type of photosynthesis discovered
17.06.2018 | Imperial College London

nachricht New ID pictures of conducting polymers discover a surprise ABBA fan
17.06.2018 | University of Warwick

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

Im Focus: Photoexcited graphene puzzle solved

A boost for graphene-based light detectors

Light detection and control lies at the heart of many modern device applications, such as smartphone cameras. Using graphene as a light-sensitive material for...

Im Focus: Water is not the same as water

Water molecules exist in two different forms with almost identical physical properties. For the first time, researchers have succeeded in separating the two forms to show that they can exhibit different chemical reactivities. These results were reported by researchers from the University of Basel and their colleagues in Hamburg in the scientific journal Nature Communications.

From a chemical perspective, water is a molecule in which a single oxygen atom is linked to two hydrogen atoms. It is less well known that water exists in two...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Scientists predict a new superhard material with unique properties

18.06.2018 | Materials Sciences

Squeezing light at the nanoscale

18.06.2018 | Physics and Astronomy

A sprinkle of platinum nanoparticles onto graphene makes brain probes more sensitive

15.06.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>