Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New DNA method makes it easier to trace criminals

29.10.2009
DNA samples often convict criminals. But many of today's forensic tests are so polluted by soil, tobacco and food remains, for example, that they can not be used.

Now researchers at Lund University in Sweden, working together with the Swedish National Laboratory of Forensic Science, SKL, have improved a critical part of the analysis process. The first findings, published in the latest issue of the journal Biotechniques, indicate that the new method strengthens the DNA analysis so that previously negative samples yield positive and usable DNA profiles.

"The results are overwhelming. In my study I selected 32 truly difficult samples from the SKL archive, that is, with few cells, little DNA, and many so-called inhibitors, meaning lots of junk. With current methods it was impossible to get acceptable DNA profiles from any of them. But with the new method, 28 of the samples yielded more usable DNA profiles," says Johannes Hedman, an industrial doctoral candidate from SKL doing research at the Faculty of Engineering, Lund University.

Genetic information has become more and more common in forensic analyses. The analysis flow usually starts with taking a sample with a swab from a drinking glass or a blood spot, for example. The cells from the swab are then dissolved in water, and the DNA is extracted.

In forensics all over the world, much work has been done to improve the taking and handling of samples.

"The DNA analysis, on the other hand, has been something of a black box, since it is purchased as a finished product. No one has tried to improve it to be able to deal with dirty samples. But this is absolutely crucial, since the samples often have extremely small amounts of DNA. In this phase you copy certain parts of the DNA strands and then obtain a DNA profile that is unique to each person.

In the copying step, I have optimized the chemical environment and replaced a key enzyme, a so-called DNA polymerase. This yields a clearer genetic footprint, a DNA profile, to work with," explains Johannes Hedman. He has also devised a new mathematical model that makes it easy to interpret the DNA analysis.

If the copying phase is improved, stronger DNA evidence can be shown from crime scenes that today provide only partial or entirely blank DNA profiles. In other words, the chances are greater that a person can be found and linked to a particular crime.

The reason Johannes Hedman wound up at Lund is the fact that Peter Rådström, a professor of microbiological engineering, has been working

since the late 1980s to improve DNA-based infection diagnostics and microbiological analyses for food. SKL was eager to find out whether these research findings could be applied to improving forensic DNA analysis.

"This collaboration opens new vistas for both SKL and Lund University, and we hope to be able to continue to work together with Peter Rådström's team. We have truly seen cross-fertilization," says Birgitta Rasmusson, research director at SKL.

Read the article here:
http://www.biotechniques.com/multimedia/archive/00069/BTN_A_000113256
_O_69111a.pdf
For more information, please contact Johannes Hedman, doctoral candidate in microbiological engineering and senior molecular biologist
at SKL, phone: +46 (0)70-601 93 71, johannes.hedman@tmb.lth.se, Peter
Rådström, professor of microbiological enineering, phone: +46 (0)46-222 34 12, Peter.Radstrom@tmb.lth.se, Ricky Ansell, expert
(DNA), SKL, phone: +46 (0)13 - 24 14 35, ricky.ansell@skl.polisen.se or Birgitta Rasmusson, research director, SKL, phone: +46 (0)13- 24 16

25, birgitta.rasmusson@skl.polisen.se

Kristina Lindgärde | idw
Further information:
http://www.vr.se

More articles from Life Sciences:

nachricht Researchers identify potentially druggable mutant p53 proteins that promote cancer growth
09.12.2016 | Cold Spring Harbor Laboratory

nachricht Plant-based substance boosts eyelash growth
09.12.2016 | Fraunhofer-Institut für Angewandte Polymerforschung IAP

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>