Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New DNA method makes it easier to trace criminals

29.10.2009
DNA samples often convict criminals. But many of today's forensic tests are so polluted by soil, tobacco and food remains, for example, that they can not be used.

Now researchers at Lund University in Sweden, working together with the Swedish National Laboratory of Forensic Science, SKL, have improved a critical part of the analysis process. The first findings, published in the latest issue of the journal Biotechniques, indicate that the new method strengthens the DNA analysis so that previously negative samples yield positive and usable DNA profiles.

"The results are overwhelming. In my study I selected 32 truly difficult samples from the SKL archive, that is, with few cells, little DNA, and many so-called inhibitors, meaning lots of junk. With current methods it was impossible to get acceptable DNA profiles from any of them. But with the new method, 28 of the samples yielded more usable DNA profiles," says Johannes Hedman, an industrial doctoral candidate from SKL doing research at the Faculty of Engineering, Lund University.

Genetic information has become more and more common in forensic analyses. The analysis flow usually starts with taking a sample with a swab from a drinking glass or a blood spot, for example. The cells from the swab are then dissolved in water, and the DNA is extracted.

In forensics all over the world, much work has been done to improve the taking and handling of samples.

"The DNA analysis, on the other hand, has been something of a black box, since it is purchased as a finished product. No one has tried to improve it to be able to deal with dirty samples. But this is absolutely crucial, since the samples often have extremely small amounts of DNA. In this phase you copy certain parts of the DNA strands and then obtain a DNA profile that is unique to each person.

In the copying step, I have optimized the chemical environment and replaced a key enzyme, a so-called DNA polymerase. This yields a clearer genetic footprint, a DNA profile, to work with," explains Johannes Hedman. He has also devised a new mathematical model that makes it easy to interpret the DNA analysis.

If the copying phase is improved, stronger DNA evidence can be shown from crime scenes that today provide only partial or entirely blank DNA profiles. In other words, the chances are greater that a person can be found and linked to a particular crime.

The reason Johannes Hedman wound up at Lund is the fact that Peter Rådström, a professor of microbiological engineering, has been working

since the late 1980s to improve DNA-based infection diagnostics and microbiological analyses for food. SKL was eager to find out whether these research findings could be applied to improving forensic DNA analysis.

"This collaboration opens new vistas for both SKL and Lund University, and we hope to be able to continue to work together with Peter Rådström's team. We have truly seen cross-fertilization," says Birgitta Rasmusson, research director at SKL.

Read the article here:
http://www.biotechniques.com/multimedia/archive/00069/BTN_A_000113256
_O_69111a.pdf
For more information, please contact Johannes Hedman, doctoral candidate in microbiological engineering and senior molecular biologist
at SKL, phone: +46 (0)70-601 93 71, johannes.hedman@tmb.lth.se, Peter
Rådström, professor of microbiological enineering, phone: +46 (0)46-222 34 12, Peter.Radstrom@tmb.lth.se, Ricky Ansell, expert
(DNA), SKL, phone: +46 (0)13 - 24 14 35, ricky.ansell@skl.polisen.se or Birgitta Rasmusson, research director, SKL, phone: +46 (0)13- 24 16

25, birgitta.rasmusson@skl.polisen.se

Kristina Lindgärde | idw
Further information:
http://www.vr.se

More articles from Life Sciences:

nachricht Discovery of a Key Regulatory Gene in Cardiac Valve Formation
24.05.2017 | Universität Basel

nachricht Carcinogenic soot particles from GDI engines
24.05.2017 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

Physicists discover mechanism behind granular capillary effect

24.05.2017 | Physics and Astronomy

Measured for the first time: Direction of light waves changed by quantum effect

24.05.2017 | Physics and Astronomy

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>