Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

DNA Find Reveals New Insights Into the History of Cattle in Europe

29.07.2014

A research team from the University of Basel made a surprising find in a Neolithic settlement at the boarders of Lake Biel in Switzerland: The DNA of a cattle bone shows genetic traces of the European aurochs and thus adds a further facet to the history of cattle domestication. The journal Scientific Reports has published the results.

The modern cattle is the domesticated descendant of the aurochs, a wild species that became extinct in the 17th century. The aurochs' domestication already began roughly 10,000 years ago in the Near East. It is their DNA that reveals their ancestry:


Metacarpus of a small and compact adult bovid found in Twann after sampling for genetic analysis.

Illustration: University of Basel, Integrative Prehistory and Archaeological Science

Aurochs of the Near East carry a maternally inherited genetic signature (mtDNA) called T haplogroup. Modern cattle still carry this signature and thus show that they derive from these early domesticated cattle of the Near East. This suggests that with the spreading of early farmers from the Near East to Europa, the domesticated cattle was imported to Europe alongside.

Unlike the aurochs of the Near East, the local wild aurochs of Europe belonged to the P haplogroup. So far, scientists believed that the female European aurochs did not genetically influence the Near Eastern cattle imported during the Neolithic Age (5,500 – 2,200 BC).

Small sturdy cows as draft animals

Scientists from the University of Basel by accident found a very small metacarpal bone from a Neolithic cattle among other animal bones found in the lake settlement Twann in Switzerland and analyzed its mtDNA.

The analysis showed that the bovine bone carried the European aurochs' genetic signature of the P haplogroup. The bone thus represents the first indisputable evidence that female European aurochs also crossbred with domestic cattle from the Near East.

The bone, dated to around 3,100 BC, is evidence for the earlier crossbreeding between a wild female European aurochs with a domestic bull.

“If these were coincidental single events or rather cases of intentional crossbreeding cannot be clearly answered on the basis of our results”, explains Prof. Jörg Schibler, head of the research groups for Integrative Prehistoric and Archaeological Science (IPAS) from the Department Environmental Science at the University of Basel.

The animal, to which the bone belonged, was exceptionally small with a withers height of only 112 centimeters. “This raises a number of questions for us: How difficult was copulation or birth in this case? And how many generations did it take to develop such small animals?”, explains the archaeogenetics specialist Angela Schlumbaum in regards to the significance of the discovery.

The scientists assume that the early farmers of the Horgen culture (3,400 – 2,750 BC), to which the bone dates, could have been trying to create a new smaller and sturdier type of cattle especially suitable as draft animal by intentional crossbreeding with wild aurochs. This assumption would be in accordance with archaeological finds of wooden wheels, wagons and a yoke from the Horgen culture.

Originial source
Schibler, J., Elsner, J. & Schlumbaum A.
Incorporation of aurochs into cattle hern in Neolithic Europe: single event or breeding?
Scientific Reports 4, 5798, published 23 July 2014 | doi: 10.1038/srep05798

Further information
Dr. Angela Schlumbaum, University of Basel, Department Environmental Science, phone: +41 61 201 02 18, email: Angela.Schlumbaum@unibas.ch

Weitere Informationen:

http://dx.doi.org/10.1038/srep05798 - Abstract

Reto Caluori | Universität Basel

Further reports about: Basel Cattle DNA Environmental Neolithic culture farmers female haplogroup mtDNA small

More articles from Life Sciences:

nachricht Topologische Quantenchemie
21.07.2017 | Max-Planck-Institut für Chemische Physik fester Stoffe

nachricht Topological Quantum Chemistry
21.07.2017 | Max-Planck-Institut für Chemische Physik fester Stoffe

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA looks to solar eclipse to help understand Earth's energy system

21.07.2017 | Earth Sciences

Stanford researchers develop a new type of soft, growing robot

21.07.2017 | Power and Electrical Engineering

Vortex photons from electrons in circular motion

21.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>