Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

DNA editing tool flips its target

05.09.2008
Imagine having to copy an entire book by hand without missing a comma. Our cells face a similar task every time they divide. They must duplicate both their DNA and a subtle pattern of punctuation-like modifications on the DNA known as methylation.

Scientists at Emory University School of Medicine have caught in action one of the tools mammalian cells use to maintain their pattern of methylation. Visualized by X-ray crystallography, the SRA domain of the protein UHRF1 appears to act like a bookmark while enzymes are copying a molecule of DNA.

The team's description of the protein's structure while bound to DNA is published this week in Nature.

Scientists refer to methylation, the addition of a methyl group to DNA, as an "epigenetic" modification because it adds a layer of information on top of the genetic sequence of the DNA itself. It marks genes for silencing, which means they do not manufacture proteins.

"The processes that copy the methylation pattern have to be faithful," says senior author Xiaodong Cheng, PhD, professor of biochemistry and a Georgia Research Alliance eminent scholar. "Otherwise, losing DNA methylation marks can have serious consequences, causing genes to become active at the wrong places and times."

"Gene silencing via DNA methylation is critical for normal development and for curbing the runaway cell division that characterizes cancer," said Peter Preusch, PhD, who oversees biophysics grants at the National Institute of General Medical Sciences of the National Institutes of Health. "Alterations in methylation patterns are also important for generating embryonic stem-like cells from differentiated cells."

In mammalian cells, methylation usually appears on double stranded DNA where the nucleotide Cytosine (C) is followed by Guanine (G). The complementary sequence on the opposite strand is also C then G, and the methylation appears on both Cs.

When a cell is copying its DNA, a set of enzymes duplicates the DNA sequence from the parental strand to the new "daughter" strand but not the methylation. Each new daughter strand of the DNA molecule is left with the previously methylated Cs unmethylated. UHRF1 recognizes this "hemi-methylated" DNA and calls in a methyltransferase enzyme to add a second methyl group onto the daughter strand.

"UHRF1 has the important task of making sure the methyltransferase enzyme does its job in the right place and right time," Cheng says.

Mouse cells that have deleted the UHRF1 gene are more sensitive to DNA-damaging agents such as radiation, and mouse embryos without the gene cannot complete development. Other studies have found that cancer cells produce more UHRF1 than non-cancerous cells.

What was an unexpected finding was how the SRA domain of UHRF1 recognizes the hemi-methylated DNA, Cheng says. It flips the methylated nucleotide out of the DNA helix, which only had been seen previously in enzymes that physically modify the DNA.

Cheng says the flipping mechanism could prevent the protein from sliding away once it has found a hemi-methylated site.

"It suggests that it serves as a placeholder, where it recruits other enzymes for faithful DNA methylation or repair enzymes if the DNA has been damaged," he says.

Holly Korschun | EurekAlert!
Further information:
http://www.emory.edu

Further reports about: DNA DNA sequence Enzym Molecule Protein Strand UHRF1 enzyme epigenetic hemi-methylated DNA methyl methylation

More articles from Life Sciences:

nachricht 127 at one blow...
18.01.2017 | Stiftung Zoologisches Forschungsmuseum Alexander Koenig, Leibniz-Institut für Biodiversität der Tiere

nachricht How gut bacteria can make us ill
18.01.2017 | Helmholtz-Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Explaining how 2-D materials break at the atomic level

18.01.2017 | Materials Sciences

Data analysis optimizes cyber-physical systems in telecommunications and building automation

18.01.2017 | Information Technology

Reducing household waste with less energy

18.01.2017 | Ecology, The Environment and Conservation

VideoLinks
B2B-VideoLinks
More VideoLinks >>>