Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

DNA editing tool flips its target

05.09.2008
Imagine having to copy an entire book by hand without missing a comma. Our cells face a similar task every time they divide. They must duplicate both their DNA and a subtle pattern of punctuation-like modifications on the DNA known as methylation.

Scientists at Emory University School of Medicine have caught in action one of the tools mammalian cells use to maintain their pattern of methylation. Visualized by X-ray crystallography, the SRA domain of the protein UHRF1 appears to act like a bookmark while enzymes are copying a molecule of DNA.

The team's description of the protein's structure while bound to DNA is published this week in Nature.

Scientists refer to methylation, the addition of a methyl group to DNA, as an "epigenetic" modification because it adds a layer of information on top of the genetic sequence of the DNA itself. It marks genes for silencing, which means they do not manufacture proteins.

"The processes that copy the methylation pattern have to be faithful," says senior author Xiaodong Cheng, PhD, professor of biochemistry and a Georgia Research Alliance eminent scholar. "Otherwise, losing DNA methylation marks can have serious consequences, causing genes to become active at the wrong places and times."

"Gene silencing via DNA methylation is critical for normal development and for curbing the runaway cell division that characterizes cancer," said Peter Preusch, PhD, who oversees biophysics grants at the National Institute of General Medical Sciences of the National Institutes of Health. "Alterations in methylation patterns are also important for generating embryonic stem-like cells from differentiated cells."

In mammalian cells, methylation usually appears on double stranded DNA where the nucleotide Cytosine (C) is followed by Guanine (G). The complementary sequence on the opposite strand is also C then G, and the methylation appears on both Cs.

When a cell is copying its DNA, a set of enzymes duplicates the DNA sequence from the parental strand to the new "daughter" strand but not the methylation. Each new daughter strand of the DNA molecule is left with the previously methylated Cs unmethylated. UHRF1 recognizes this "hemi-methylated" DNA and calls in a methyltransferase enzyme to add a second methyl group onto the daughter strand.

"UHRF1 has the important task of making sure the methyltransferase enzyme does its job in the right place and right time," Cheng says.

Mouse cells that have deleted the UHRF1 gene are more sensitive to DNA-damaging agents such as radiation, and mouse embryos without the gene cannot complete development. Other studies have found that cancer cells produce more UHRF1 than non-cancerous cells.

What was an unexpected finding was how the SRA domain of UHRF1 recognizes the hemi-methylated DNA, Cheng says. It flips the methylated nucleotide out of the DNA helix, which only had been seen previously in enzymes that physically modify the DNA.

Cheng says the flipping mechanism could prevent the protein from sliding away once it has found a hemi-methylated site.

"It suggests that it serves as a placeholder, where it recruits other enzymes for faithful DNA methylation or repair enzymes if the DNA has been damaged," he says.

Holly Korschun | EurekAlert!
Further information:
http://www.emory.edu

Further reports about: DNA DNA sequence Enzym Molecule Protein Strand UHRF1 enzyme epigenetic hemi-methylated DNA methyl methylation

More articles from Life Sciences:

nachricht Researchers identify potentially druggable mutant p53 proteins that promote cancer growth
09.12.2016 | Cold Spring Harbor Laboratory

nachricht Plant-based substance boosts eyelash growth
09.12.2016 | Fraunhofer-Institut für Angewandte Polymerforschung IAP

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>