Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Diversity Among Parasitic Wasps Is Even Greater Than Suspected

01.09.2008
A tiny wasp that lays its eggs under the skin of unwitting caterpillars belongs to one of the most diverse groups of insects on Earth. Now researchers report that its diversity is even higher than previously thought.

By combining ecological and genetic data with the painstaking detective work of taxonomy, the researchers have dramatically increased – nearly doubling – the estimated number of species reported of six very species-rich genera of parasitoid wasps.

The subfamily to which these wasps belong, Microgastrinae, gets its name from its tiny abdomen. The wasp itself is quite small, about the size of the lead at the tip of a pencil.

By looking at the physical characteristics (morphology) of more than 2,500 wasps, the taxonomists identified 171 provisional species of microgastrine braconid wasps. But a comparative sequence analysis of a piece of a specific gene, a technique called DNA barcoding, found that there were actually 313 provisional species. (A provisional species is one that has not yet been given a formal scientific name, or in some cases, has not yet been found to be the same as a named species.)

All of the wasps were reared from caterpillars collected in Area de Conservación Guanacaste (ACG), a biological reserve in northwestern Costa Rica. A decades-long ecological inventory of the area conducted by University of Pennsylvania ecologists Daniel Janzen and Winnie Hallwachs revealed that the wasps are extraordinarily specific to the caterpillar hosts they attack. More than 90 percent of the wasp species were found to target only one or a very few species of caterpillar, out of more than 3,500 caterpillar species sampled in ACG.

More than 70 percent of the species first identified by the taxonomists were confirmed in the genetic analysis.

But the DNA barcoding also revealed that some wasps that looked alike and were once thought to belong to a single species were actually several different species, each of which preyed on only one or two species of caterpillar hosts.

“The most extreme case of overlooked diversity is the morphospecies Apanteles leucostigmus,” the authors wrote. Barcoding revealed that instead of being a single species that preyed on 32 different species of related caterpillars, as was previously thought, the wasps formerly classified as A. leucostigmus could be grouped into 36 provisional species, “each attacking one or a very few closely related species of caterpillars.”

“One of the messages of this paper is that you really need all of these different kinds of data in order to tell the species apart – that just using the morphology alone, or the genetic data or the ecological information alone isn’t enough,” said University of Illinois entomology professor James Whitfield, who led the taxonomic study. “However, once the species are distinguished, anyone can use the DNA barcode to rapidly and accurately identify one of them.”

“This represents microgastrine wasps reared from approximately 3,500 caterpillar species in ACG,” said Josephine Rodriguez, a doctoral student and microgastrine expert in Whitfield’s lab. “Since there are an estimated 10,000 species of caterpillars there, including many unsampled ones that mine inside leaves or live in fungi, this is just the tip of the microgastrine iceberg.”

Whitfield credits Rodriguez, an avowed microgastrine enthusiast, with pushing the research forward in a way that helped integrate the work of three very different laboratories. She and two assistants processed more than 5,000 specimens from the ACG ecological study and shipped them to the Biodiversity Institute of Ontario at the University of Guelph for barcoding. She also worked with Whitfield and fellow former graduate student Andy Deans, who is now on the faculty at North Carolina State University, to independently identify the species based on their morphological traits.

M. Alex Smith and Paul Hebert at the Biodiversity Institute of Ontario conducted the barcoding analysis, which compared the sequence of nucleotides that spell out the barcode region of the cytochrome c oxidase 1 gene in every specimen. Significant differences between the sequences indicated that the specimens belonged to different species if those differences correlated with other morphological and/or ecological traits. In cases where the genetic data were murky, the researchers also analyzed other genes and again compared their results to the ecological and morphological data.

The new analysis, which appeared online this month in the Proceedings of the National Academy of Sciences, sheds new light on a group of insects that are already astounding in their diversity, Whitfield said.

“The family Braconidae, to which the microgastrines belong, has about 15,000 described species in the world, and it’s been estimated to have 50 to 60,000 species, about the same as all vertebrates – all fish, mammals, amphibians, reptiles, birds – which is a lot!” Whitfield said. “And what we’re saying is that if anything we’re underestimating how many more there are.”

Editor’s note: To reach James Whitfield, call 217-333-2567; e-mail: jwhitfie@life.uiuc.edu.

Whitfield lab Web site: http://www.life.uiuc.edu/whitfield

CBOL Web site: http://www.barcoding.si.edu

Diana Yates | University of Illinois
Further information:
http://www.illinois.edu
http://www.life.uiuc.edu/whitfield
http://www.barcoding.si.edu

More articles from Life Sciences:

nachricht Water forms 'spine of hydration' around DNA, group finds
26.05.2017 | Cornell University

nachricht How herpesviruses win the footrace against the immune system
26.05.2017 | Helmholtz-Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>