Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Discovery of hair-cell roots suggests the brain modulates sound sensitivity

09.03.2012
The hair cells of the inner ear have a previously unknown "root" extension that may allow them to communicate with nerve cells and the brain to regulate sensitivity to sound vibrations and head position, researchers at the University of Illinois at Chicago College of Medicine have discovered. Their finding is reported online in advance of print in the Proceedings of the National Academy of Sciences.

The hair-like structures, called stereocilia, are fairly rigid and are interlinked at their tops by structures called tip-links.

When you move your head, or when a sound vibration enters your ear, motion of fluid in the ear causes the tip-links to get displaced and stretched, opening up ion channels and exciting the cell, which can then relay information to the brain, says Anna Lysakowski, professor of anatomy and cell biology at the UIC College of Medicine and principal investigator on the study.

The stereocilia are rooted in a gel-like cuticle on the top of the cell that is believed to act as a rigid platform, helping the hairs return to their resting position.

Lysakowski and her colleagues were interested in a part of the cell called the striated organelle, which lies underneath this cuticle plate and is believed to be responsible for its stability. Using a high-voltage electron microscope at the National Center for Microscopy and Imaging Research at the University of California, San Diego, Florin Vranceanu, a recent doctoral student in Lysakowski's UIC lab and first author of the paper, was able to construct a composite picture of the entire top section of the hair cell.

"When I saw the pictures, I was amazed," said Lysakowski.

Textbooks, she said, describe the roots of the stereocilia ending in the cuticular plate. But the new pictures showed that the roots continue through, make a sharp 110-degree angle, and extend all the way to the membrane at the opposite side of the cell, where they connect with the striated organelle.

For Lysakowski, this suggested a new way to envision how hair cells work. Just as the brain adjusts the sensitivity of retinal cells in the eye to light, it may also modulate the sensitivity of hair cells in the inner ear to sound and head position.

When the eye detects light, there is feedback from the brain to the eye. "If it's too bright the brain can say, okay, I'll detect less light -- or, it's not bright enough, let me detect more," Lysakowski said.

With the striated organelle connecting the rootlets to the cell membrane, it creates the possibility of feedback from the cell to the very detectors that detect motion. Feedback from the brain could alter the tension on the rootlets and their sensitivity to stimuli. The striated organelle may also tip the whole cuticular plate at once to modulate the entire process.

"This may revolutionize the way we think about the hair cells in the inner ear," Lysakowski said.

The study was supported by the grants from the National Institutes of Deafness and other Communication Disorders, the American Hearing Research Foundation, the National Center for Research Resources, and the 2008 Tallu Rosen Grant in Auditory Science from the National Organization for Hearing Research Foundation.

Graduate student Robstein Chidavaenzi and Steven Price, an electron microscope technologist, also contributed by identifying three of the proteins composing the striated organelle and demonstrating how they arise during development. Guy Perkins, Masako Terada and Mark Ellisman from the National Center for Microscopy and Imaging Research in Biological Systems, University of California, San Diego, also contributed to the study.

[Editor's Note: Photos and video animation of the 3-D structure of the stereocilia (hair cells) is available at newsphoto.lib.uic.edu/v/lysakowski/]

For more information about the University of Illinois Medical Center, visit www.uillinoismedcenter.org

NOTE: Please refer to the institution as the University of Illinois at Chicago on first reference and UIC on second reference. "University of Illinois" and "U. of I." are often assumed to refer to our sister campus in Urbana-Champaign.

Jeanne Galatzer-Levy | EurekAlert!
Further information:
http://www.uic.edu

More articles from Life Sciences:

nachricht Molecular microscopy illuminates molecular motor motion
26.07.2017 | Penn State

nachricht New virus discovered in migratory bird in Rio Grande do Sul, Brazil
26.07.2017 | Fundação de Amparo à Pesquisa do Estado de São Paulo

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

 
Latest News

CCNY physicists master unexplored electron property

26.07.2017 | Physics and Astronomy

Molecular microscopy illuminates molecular motor motion

26.07.2017 | Life Sciences

Large-Mouthed Fish Was Top Predator After Mass Extinction

26.07.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>