Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Discovery of hair-cell roots suggests the brain modulates sound sensitivity

09.03.2012
The hair cells of the inner ear have a previously unknown "root" extension that may allow them to communicate with nerve cells and the brain to regulate sensitivity to sound vibrations and head position, researchers at the University of Illinois at Chicago College of Medicine have discovered. Their finding is reported online in advance of print in the Proceedings of the National Academy of Sciences.

The hair-like structures, called stereocilia, are fairly rigid and are interlinked at their tops by structures called tip-links.

When you move your head, or when a sound vibration enters your ear, motion of fluid in the ear causes the tip-links to get displaced and stretched, opening up ion channels and exciting the cell, which can then relay information to the brain, says Anna Lysakowski, professor of anatomy and cell biology at the UIC College of Medicine and principal investigator on the study.

The stereocilia are rooted in a gel-like cuticle on the top of the cell that is believed to act as a rigid platform, helping the hairs return to their resting position.

Lysakowski and her colleagues were interested in a part of the cell called the striated organelle, which lies underneath this cuticle plate and is believed to be responsible for its stability. Using a high-voltage electron microscope at the National Center for Microscopy and Imaging Research at the University of California, San Diego, Florin Vranceanu, a recent doctoral student in Lysakowski's UIC lab and first author of the paper, was able to construct a composite picture of the entire top section of the hair cell.

"When I saw the pictures, I was amazed," said Lysakowski.

Textbooks, she said, describe the roots of the stereocilia ending in the cuticular plate. But the new pictures showed that the roots continue through, make a sharp 110-degree angle, and extend all the way to the membrane at the opposite side of the cell, where they connect with the striated organelle.

For Lysakowski, this suggested a new way to envision how hair cells work. Just as the brain adjusts the sensitivity of retinal cells in the eye to light, it may also modulate the sensitivity of hair cells in the inner ear to sound and head position.

When the eye detects light, there is feedback from the brain to the eye. "If it's too bright the brain can say, okay, I'll detect less light -- or, it's not bright enough, let me detect more," Lysakowski said.

With the striated organelle connecting the rootlets to the cell membrane, it creates the possibility of feedback from the cell to the very detectors that detect motion. Feedback from the brain could alter the tension on the rootlets and their sensitivity to stimuli. The striated organelle may also tip the whole cuticular plate at once to modulate the entire process.

"This may revolutionize the way we think about the hair cells in the inner ear," Lysakowski said.

The study was supported by the grants from the National Institutes of Deafness and other Communication Disorders, the American Hearing Research Foundation, the National Center for Research Resources, and the 2008 Tallu Rosen Grant in Auditory Science from the National Organization for Hearing Research Foundation.

Graduate student Robstein Chidavaenzi and Steven Price, an electron microscope technologist, also contributed by identifying three of the proteins composing the striated organelle and demonstrating how they arise during development. Guy Perkins, Masako Terada and Mark Ellisman from the National Center for Microscopy and Imaging Research in Biological Systems, University of California, San Diego, also contributed to the study.

[Editor's Note: Photos and video animation of the 3-D structure of the stereocilia (hair cells) is available at newsphoto.lib.uic.edu/v/lysakowski/]

For more information about the University of Illinois Medical Center, visit www.uillinoismedcenter.org

NOTE: Please refer to the institution as the University of Illinois at Chicago on first reference and UIC on second reference. "University of Illinois" and "U. of I." are often assumed to refer to our sister campus in Urbana-Champaign.

Jeanne Galatzer-Levy | EurekAlert!
Further information:
http://www.uic.edu

More articles from Life Sciences:

nachricht Tag it EASI – a new method for accurate protein analysis
19.06.2018 | Max-Planck-Institut für Biochemie

nachricht How to track and trace a protein: Nanosensors monitor intracellular deliveries
19.06.2018 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

Im Focus: Photoexcited graphene puzzle solved

A boost for graphene-based light detectors

Light detection and control lies at the heart of many modern device applications, such as smartphone cameras. Using graphene as a light-sensitive material for...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Carbon nanotube optics provide optical-based quantum cryptography and quantum computing

19.06.2018 | Physics and Astronomy

How to track and trace a protein: Nanosensors monitor intracellular deliveries

19.06.2018 | Life Sciences

New material for splitting water

19.06.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>