Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Discovery of new gene mutation in schizophrenia offers a new target for drug therapies

24.02.2011
Newly identified gene mutation has potential for the development of more effective treatment of Schizophrenia

In a major advance for schizophrenia research, an international team of scientists led by the University of California, San Diego School of Medicine and involving Trinity College Dublin researchers has identified a gene mutation strongly linked to schizophrenia that may be an important new target for the development of drug therapies. The findings are just published in the online issue of the journal Nature.

Schizophrenia is a chronic, severe and disabling brain disorder, with symptoms that include hallucinations, delusions and thought disorder. Schizophrenia is believed to be caused by environmental and genetic factors, most notably the latter: the illness occurs in 1% of the general population, or 10 % of people who have a first-degree relative with the disorder, such as a parent or sibling. Current therapies are only partially effective with little progress being made in identifying effective new treatments over several decades.

In the last three years researchers have discovered that rare mutations at many locations in the human genome resulted in significantly higher risk of schizophrenia. These mutations consisted of copy number variants or CNVs −a type of genetic variation in which the number of copies of a gene differs between individuals. The findings were the first conclusive evidence that rare mutations can cause schizophrenia, but this did not identify the specific genes involved.

Professor Aiden Corvin of the Psychosis Research Group at Trinity College Dublin, funded by Science Foundation Ireland and the Wellcome Trust, and an author on this paper, describes that the latest study goes substantially further.

Researchers scanned for CNVs in the genomes of 8,290 individuals with diagnosed cases of schizophrenia and 7,431 healthy controls. The study confirmed CNVs identified in earlier studies, but uncovered an important new finding: duplications at the tip of chromosome 7q were detected in individuals with schizophrenia at a rate 14 times higher than in healthy individuals. These duplications impact a gene coding for the brain receptor VIPR2.

Formally known as the Vasoactive Intestinal Peptide Receptor 2, VIPR2 is expressed in the nervous system, including in the brain, blood vessels and gastrointestinal tract. Previous studies have shown that VIPR2 helps to regulate the formation and activity of neurons in the brain. In mice, VIPR2 also has been found to play important roles in behavioral processes, including learning and timing of daily activity. The study next measured expression of the VIPR2 gene in blood cells from patients, they found that individuals with mutations had greater expression of VIPR2 and greater activity of the receptor.

"This suggests that the mutations increase signaling in the Vasoactive Intestinal Peptide pathway," says Professor Corvin. "We know that this activity can be modulated by synthetic peptides (compounds where amino acids are linked together) and the next step is to see if these compounds have a therapeutic effect in mice or in cultured human cells that carry the VIPR2 gene mutation."

The Psychosis Research Group at Trinity College Dublin were involved in the study design, analysis and data interpretation. Irish patients and their families from Trinity teaching hospitals contributed to the original test sample of 802 cases and 742 controls (along with participants from Columbia University, Harvard, NYU, McLean and University of Washington medical teaching hospitals). The larger replication set of approximately 8,290 cases and controls also included Irish participants.

The global collaborative research was led by assistant professor of psychiatry and cellular and molecular medicine, Jonathan Sebat, at the University of California, San Diego School of Medicine.

Caoimhe Ní Lochlainn | EurekAlert!
Further information:
http://www.tcd.ie

More articles from Life Sciences:

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

nachricht Stingless bees have their nests protected by soldiers
24.02.2017 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>