Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Discovery of new gene mutation in schizophrenia offers a new target for drug therapies

24.02.2011
Newly identified gene mutation has potential for the development of more effective treatment of Schizophrenia

In a major advance for schizophrenia research, an international team of scientists led by the University of California, San Diego School of Medicine and involving Trinity College Dublin researchers has identified a gene mutation strongly linked to schizophrenia that may be an important new target for the development of drug therapies. The findings are just published in the online issue of the journal Nature.

Schizophrenia is a chronic, severe and disabling brain disorder, with symptoms that include hallucinations, delusions and thought disorder. Schizophrenia is believed to be caused by environmental and genetic factors, most notably the latter: the illness occurs in 1% of the general population, or 10 % of people who have a first-degree relative with the disorder, such as a parent or sibling. Current therapies are only partially effective with little progress being made in identifying effective new treatments over several decades.

In the last three years researchers have discovered that rare mutations at many locations in the human genome resulted in significantly higher risk of schizophrenia. These mutations consisted of copy number variants or CNVs −a type of genetic variation in which the number of copies of a gene differs between individuals. The findings were the first conclusive evidence that rare mutations can cause schizophrenia, but this did not identify the specific genes involved.

Professor Aiden Corvin of the Psychosis Research Group at Trinity College Dublin, funded by Science Foundation Ireland and the Wellcome Trust, and an author on this paper, describes that the latest study goes substantially further.

Researchers scanned for CNVs in the genomes of 8,290 individuals with diagnosed cases of schizophrenia and 7,431 healthy controls. The study confirmed CNVs identified in earlier studies, but uncovered an important new finding: duplications at the tip of chromosome 7q were detected in individuals with schizophrenia at a rate 14 times higher than in healthy individuals. These duplications impact a gene coding for the brain receptor VIPR2.

Formally known as the Vasoactive Intestinal Peptide Receptor 2, VIPR2 is expressed in the nervous system, including in the brain, blood vessels and gastrointestinal tract. Previous studies have shown that VIPR2 helps to regulate the formation and activity of neurons in the brain. In mice, VIPR2 also has been found to play important roles in behavioral processes, including learning and timing of daily activity. The study next measured expression of the VIPR2 gene in blood cells from patients, they found that individuals with mutations had greater expression of VIPR2 and greater activity of the receptor.

"This suggests that the mutations increase signaling in the Vasoactive Intestinal Peptide pathway," says Professor Corvin. "We know that this activity can be modulated by synthetic peptides (compounds where amino acids are linked together) and the next step is to see if these compounds have a therapeutic effect in mice or in cultured human cells that carry the VIPR2 gene mutation."

The Psychosis Research Group at Trinity College Dublin were involved in the study design, analysis and data interpretation. Irish patients and their families from Trinity teaching hospitals contributed to the original test sample of 802 cases and 742 controls (along with participants from Columbia University, Harvard, NYU, McLean and University of Washington medical teaching hospitals). The larger replication set of approximately 8,290 cases and controls also included Irish participants.

The global collaborative research was led by assistant professor of psychiatry and cellular and molecular medicine, Jonathan Sebat, at the University of California, San Diego School of Medicine.

Caoimhe Ní Lochlainn | EurekAlert!
Further information:
http://www.tcd.ie

More articles from Life Sciences:

nachricht Closing in on advanced prostate cancer
13.12.2017 | Institute for Research in Biomedicine (IRB Barcelona)

nachricht Visualizing single molecules in whole cells with a new spin
13.12.2017 | Wyss Institute for Biologically Inspired Engineering at Harvard

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

A whole-body approach to understanding chemosensory cells

13.12.2017 | Health and Medicine

Water without windows: Capturing water vapor inside an electron microscope

13.12.2017 | Physics and Astronomy

Cellular Self-Digestion Process Triggers Autoimmune Disease

13.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>