Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Discovery of new gene mutation in schizophrenia offers a new target for drug therapies

24.02.2011
Newly identified gene mutation has potential for the development of more effective treatment of Schizophrenia

In a major advance for schizophrenia research, an international team of scientists led by the University of California, San Diego School of Medicine and involving Trinity College Dublin researchers has identified a gene mutation strongly linked to schizophrenia that may be an important new target for the development of drug therapies. The findings are just published in the online issue of the journal Nature.

Schizophrenia is a chronic, severe and disabling brain disorder, with symptoms that include hallucinations, delusions and thought disorder. Schizophrenia is believed to be caused by environmental and genetic factors, most notably the latter: the illness occurs in 1% of the general population, or 10 % of people who have a first-degree relative with the disorder, such as a parent or sibling. Current therapies are only partially effective with little progress being made in identifying effective new treatments over several decades.

In the last three years researchers have discovered that rare mutations at many locations in the human genome resulted in significantly higher risk of schizophrenia. These mutations consisted of copy number variants or CNVs −a type of genetic variation in which the number of copies of a gene differs between individuals. The findings were the first conclusive evidence that rare mutations can cause schizophrenia, but this did not identify the specific genes involved.

Professor Aiden Corvin of the Psychosis Research Group at Trinity College Dublin, funded by Science Foundation Ireland and the Wellcome Trust, and an author on this paper, describes that the latest study goes substantially further.

Researchers scanned for CNVs in the genomes of 8,290 individuals with diagnosed cases of schizophrenia and 7,431 healthy controls. The study confirmed CNVs identified in earlier studies, but uncovered an important new finding: duplications at the tip of chromosome 7q were detected in individuals with schizophrenia at a rate 14 times higher than in healthy individuals. These duplications impact a gene coding for the brain receptor VIPR2.

Formally known as the Vasoactive Intestinal Peptide Receptor 2, VIPR2 is expressed in the nervous system, including in the brain, blood vessels and gastrointestinal tract. Previous studies have shown that VIPR2 helps to regulate the formation and activity of neurons in the brain. In mice, VIPR2 also has been found to play important roles in behavioral processes, including learning and timing of daily activity. The study next measured expression of the VIPR2 gene in blood cells from patients, they found that individuals with mutations had greater expression of VIPR2 and greater activity of the receptor.

"This suggests that the mutations increase signaling in the Vasoactive Intestinal Peptide pathway," says Professor Corvin. "We know that this activity can be modulated by synthetic peptides (compounds where amino acids are linked together) and the next step is to see if these compounds have a therapeutic effect in mice or in cultured human cells that carry the VIPR2 gene mutation."

The Psychosis Research Group at Trinity College Dublin were involved in the study design, analysis and data interpretation. Irish patients and their families from Trinity teaching hospitals contributed to the original test sample of 802 cases and 742 controls (along with participants from Columbia University, Harvard, NYU, McLean and University of Washington medical teaching hospitals). The larger replication set of approximately 8,290 cases and controls also included Irish participants.

The global collaborative research was led by assistant professor of psychiatry and cellular and molecular medicine, Jonathan Sebat, at the University of California, San Diego School of Medicine.

Caoimhe Ní Lochlainn | EurekAlert!
Further information:
http://www.tcd.ie

More articles from Life Sciences:

nachricht Bolstering fat cells offers potential new leukemia treatment
17.10.2017 | McMaster University

nachricht Ocean atmosphere rife with microbes
17.10.2017 | King Abdullah University of Science & Technology (KAUST)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Ocean atmosphere rife with microbes

17.10.2017 | Life Sciences

Neutrons observe vitamin B6-dependent enzyme activity useful for drug development

17.10.2017 | Life Sciences

NASA finds newly formed tropical storm lan over open waters

17.10.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>