Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Discovery of a cell that suppresses the immune system

05.10.2010
Lupus Research Institute-funded investigator says breakthrough holds potential for new treatment to quiet lupus

Researchers at the Dana-Farber Cancer Institute in Boston have identified a new type of cell in mice that dampens the immune system and protects the animal's own cells from immune system attack.

This "suppressor" cell reduces the production of harmful antibodies that can drive lupus and other autoimmune diseases in which the immune system mistakenly turns on otherwise healthy organs and tissues.

The discovery, published in the September 16 issue of Nature (H Kim, et al.; Vol 467 in Letters), resulted from Lupus Research Institute funding to Harvey Cantor, MD, and colleagues on a separate immune system topic.

Now the discovery will be used to explore therapies that might control the hyperactive immune system in lupus. "These CD8+ T suppressor cells represent a potential new lever for lowering the strength of the immune response in autoimmune diseases such as lupus," Dr. Cantor said.

Staying Open to Discovery

Until now, scientists searching for cells involved in quieting the immune system response had focused their hunt on "regulatory CD4+ T cells"—also known as CD4+ Treg. Some of these cells have been shown to prevent harmful inflammatory diseases and infections.

In the Nature study, Harvey Cantor, MD, and his team reported that not just CD4+T cells but CD8+ T cells as well include a subset that helps dampen the immune response. Instead of reducing inflammation like their CD4 cousins, the CD8+ T regulatory cells ensure that the immune system doesn't produce antibodies that attack normal cells.

Lead author Hye-Jung Kim and colleagues made the discovery as they were winding up unrelated LRI-funded work into the role in autoimmunity of a protein found inside immune cells called osteopontin.

"Our LRI funds allowed us to carry out the early experiments that led to the definition of the CD8 suppressor cells." - Dr. Cantor.

"We were testing osteopontin's activity against a population of cells known as follicular T helper cells," explained Dr. Cantor. "We noted that the cells were responsive to osteopontin but also that they expressed what we knew to be the target of suppressor CD8+ T cells."

As next steps, Dr. Cantor and his team will investigate whether defective CD8+ T suppressor cells actually could be a cause of lupus and might serve as a powerful drug target for quieting the immune system response in autoimmunity.

About Lupus

Systemic lupus erythematosis is a chronic complex and potentially fatal autoimmune disease that affects more than 1.5-million Americans, mostly young women in their child-bearing years. Lupus causes the immune system to become hyperactive, forming antibodies that attack and damage the body's own tissues and vital organs including the heart, brain, kidneys and lungs. Lupus is a leading cause of cardiovascular disease, kidney disease and stroke among young women. As yet, there is no known cause or cure but the progress of recent discoveries is highly promising.

About The Lupus Research Institute

The Lupus Research Institute, (LRI) is the world's leading private supporter of innovative research in lupus, pioneering discovery to prevent, treat, and cure this complex and dangerous autoimmune disease. Founded in 2000 by families and shaped by scientists, the LRI champions scientific creativity and risk taking, mandating sound science and rigorous peer review to uncover and support only the highest ranked novel research. At the end of 2009, the Institute marked a breakthrough first decade – generating $100-million for bold and imaginative novel science in lupus – work that would not exist without the LRI's high risk, high reward strategy.

Liane Stegmaier | EurekAlert!
Further information:
http://www.lupusny.org

More articles from Life Sciences:

nachricht Decoding the genome's cryptic language
27.02.2017 | University of California - San Diego

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Safe glide at total engine failure with ELA-inside

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded after a glide flight with an Airbus A320 in ditching on the Hudson River. All 155 people on board were saved.

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded...

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

New pop-up strategy inspired by cuts, not folds

27.02.2017 | Materials Sciences

Sandia uses confined nanoparticles to improve hydrogen storage materials performance

27.02.2017 | Interdisciplinary Research

Decoding the genome's cryptic language

27.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>