Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Last dinosaur before mass extinction discovered

13.07.2011
A team of scientists has discovered the youngest dinosaur preserved in the fossil record before the catastrophic meteor impact 65 million years ago. The finding indicates that dinosaurs did not go extinct prior to the impact and provides further evidence as to whether the impact was in fact the cause of their extinction.

Researchers from Yale University discovered the fossilized horn of a ceratopsian – likely a Triceratops, which are common to the area – in the Hell Creek formation in Montana last year. They found the fossil buried just five inches below the K-T boundary, the geological layer that marks the transition from the Cretaceous period to the Tertiary period at the time of the mass extinction that took place 65 million years ago.

Since the impact hypothesis for the demise of the dinosaurs was first proposed more than 30 years ago, many scientists have come to believe the meteor caused the mass extinction and wiped out the dinosaurs, but a sticking point has been an apparent lack of fossils buried within the 10 feet of rock below the K-T boundary. The seeming anomaly has come to be known as the "three-meter gap." Until now, this gap has caused some paleontologists to question whether the non-avian dinosaurs of the era – which included Tyrannosaurus rex, Triceratops, Torosaurus and the duckbilled dinosaurs – gradually went extinct sometime before the meteor struck. (Avian dinosaurs survived the impact, and eventually gave rise to modern-day birds.)

"This discovery suggests the three-meter gap doesn't exist," said Yale graduate student Tyler Lyson, director of the Marmarth Research Foundation and lead author of the study, published online July 12 in the journal Biology Letters. "The fact that this specimen was so close to the boundary indicates that at least some dinosaurs were doing fine right up until the impact."

While the team can't determine the exact age of the dinosaur, Lyson said it likely lived tens of thousands to just a few thousand years before the impact. "This discovery provides some evidence that dinosaurs didn't slowly die out before the meteor struck," he said.

Eric Sargis, curator of vertebrate paleontology at the Yale Peabody Museum of Natural History, and graduate student Stephen Chester discovered the ceratopsian last year while searching for fossilized mammals that evolved after the meteor impact. At first, Lyson said, the team thought it was buried within about three feet of the K-T boundary, but were surprised to learn just how close to the boundary – and hence, how close in time to the impact – it was. They sent soil samples to a laboratory to determine the exact location of the boundary, which is marked by the relative abundance of certain types of fossilized pollen and other geological indicators but is difficult to determine visually while in the field.

Because the dinosaur was buried in a mudstone floodplain, the team knew it hadn't been re-deposited from older sediments, which can sometimes happen when fossils are found in riverbeds that may have eroded and re-distributed material over time.

The team is now examining other fossil specimens that appear to be buried close to the K-T boundary and expect to find more, Lyson said. He suspects that other fossils discovered in the past may have been closer to the boundary than originally thought and that the so-called three-meter gap never existed.

"We should be able to verify that using the more sophisticated soil analysis technique rather than estimating the boundary's location based solely on a visual examination of the rock formations while in the field, which is what has typically been done in the past," Lyson said.

Other authors of the paper include Eric Sargis and Stephen Chester (Yale University); Antoine Bercovici (China University of Geosciences); Dean Pearson (Pioneer Trails Regional Museum) and Walter Joyce (University of Tübingen).

Suzanne Taylor Muzzin | EurekAlert!
Further information:
http://www.yale.edu

More articles from Life Sciences:

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

nachricht Stingless bees have their nests protected by soldiers
24.02.2017 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>