Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Difficulty in recognizing faces in autism linked to performance in a group of neurons

19.03.2013
Neuroscientists at Georgetown University Medical Center (GUMC) have discovered a brain anomaly that explains why some people diagnosed with autism cannot easily recognize faces — a deficit linked to the impairments in social interactions considered to be the hallmark of the disorder.
They also say that the novel neuroimaging analysis technique they developed to arrive at this finding is likely to help link behavioral deficits to differences at the neural level in a range of neurological disorders.

The final manuscript published March 15 in the online journal NeuroImage: Clinical, the scientists say that in the brains of many individuals with autism, neurons in the brain area that processes faces (the fusiform face area, or FFA) are too broadly "tuned" to finely discriminate between facial features of different people. They made this discovery using a form of functional magnetic resonance imaging (fMRI) that scans output from the blueberry-sized FFA, located behind the right ear.

"When your brain is processing faces, you want neurons to respond selectively so that each is picking up a different aspect of individual faces. The neurons need to be finely tuned to understand what is dissimilar from one face to another," says the study's senior investigator, Maximilian Riesenhuber, PhD., an associate professor of neuroscience at GUMC.

"What we found in our 15 adult participants with autism is that in those with more severe behavioral deficits, the neurons are more broadly tuned, so that one face looks more like another, as compared with the fine tuning seen in the FFA of typical adults," he says.

"And we found evidence that reduced selectivity in FFA neurons corresponded to greater behavioral deficits in everyday face recognition in our participants. This makes sense. If your neurons cannot tell different faces apart, it makes it more difficult to tell who is talking to you or understand the facial expressions that are conveyed, which limits social interaction."

Riesenhuber adds that there is huge variation in the ability of individuals diagnosed with autism to discriminate faces, and that some autistic people have no problem with facial recognition.

"But for those that do have this challenge, it can have substantial ramifications — some researchers believe deficits in face processing are at the root of social dysfunction in autism," he says.

The neural basis for face processing
Neuroscientists have used traditional fMRI studies in the past to probe the neural bases of behavioral differences in people with autism, but these studies have produced conflicting results, says Riesenhuber. "The fundamental problem with traditional fMRI techniques is that they can tell which parts of the brain become active during face processing, but they are poor at directly measuring neuronal selectivity," he says, "and it is this neuronal selectivity that predicts face processing performance, as shown in our previous studies."

To test their hypothesis that differences in neuronal selectivity in the FFA are foundational to differences in face processing abilities in autism, Riesenhuber and the study's lead author, neuroscientist Xiong Jiang, PhD, developed a novel brain imaging analysis technique, termed local regional heterogeneity, to estimate neuronal selectivity.

"Local regional heterogeneity, or Hcorr, as we called it, is based on the idea that neurons that have similar selectivities will on average show similar responses, whereas neurons that like different stimuli will respond differently," says Jiang. "This means that individuals with face processing deficits should show more homogeneous activity in their FFA than individuals with more typical face recognition abilities."

They tested the method in 15 adults with autism and 15 adults without the disorder. The autistic participants also underwent a standard assessment of social/behavioral functioning.

The researchers found that in each autistic participant, behavioral ability to tell faces apart was tightly linked to levels of tuning specificity in the right FFA as estimated with Hcorr. This finding was confirmed by another advanced imaging technique, fMRI rapid adaptation, shown by the group in previous work to be a good estimator of neuronal selectivity.

"Compared to the more well-established fMRI-rapid adaptation technique, Hcorr has several significant advantages," says Jiang. "Hcorr is more sensitive and can estimate neuronal selectivity as well as fMRI rapid adaptation, but with much shorter scans, and Hcorr can even estimate neuronal selectivity using data from resting state scans, thus making the technique suitable even for individuals that cannot perform complicated tasks in the scanner, such as low-functioning autistic adults, or young children."

"The study suggests that, just as in typical adults, the FFA remains the key region responsible for face processing and that changes in neuronal selectivity in this area are foundational to the variability in face processing abilities found in autism. Our study identifies a clear target for intervention," says Riesenhuber. Indeed, after the study was completed, the researchers successfully attempted to improve facial recognition skills in an autistic participant. They showed the participant pairs of faces that were very dissimilar at first, but became increasingly similar, and found that FFA tuning improved along with behavioral ability to tell the faces apart. "This suggests high-level brain areas may still be somewhat plastic in adulthood," says Riesenhuber.

The study was funded by a grant from the National Institute of Mental Health (R01MH076281), a grant from the National Science Foundation (0449743), National Institutes of Health grants (IDDRC P30HD40677 and GCRC M01-RR13297).

About Georgetown University Medical Center
Georgetown University Medical Center is an internationally recognized academic medical center with a three-part mission of research, teaching and patient care (through MedStar Health). GUMC's mission is carried out with a strong emphasis on public service and a dedication to the Catholic, Jesuit principle of cura personalis -- or "care of the whole person." The Medical Center includes the School of Medicine and the School of Nursing & Health Studies, both nationally ranked; Georgetown Lombardi Comprehensive Cancer Center, designated as a comprehensive cancer center by the National Cancer Institute; and the Biomedical Graduate Research Organization (BGRO), which accounts for the majority of externally funded research at GUMC including a Clinical Translation and Science Award from the National Institutes of Health.

Karen Mallet | EurekAlert!
Further information:
http://www.georgetown.edu

More articles from Life Sciences:

nachricht For a chimpanzee, one good turn deserves another
27.06.2017 | Max-Planck-Institut für Mathematik in den Naturwissenschaften (MPIMIS)

nachricht New method to rapidly map the 'social networks' of proteins
27.06.2017 | Salk Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Touch Displays WAY-AX and WAY-DX by WayCon

27.06.2017 | Power and Electrical Engineering

Drones that drive

27.06.2017 | Information Technology

Ultra-compact phase modulators based on graphene plasmons

27.06.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>