Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Difficulty in recognizing faces in autism linked to performance in a group of neurons

19.03.2013
Neuroscientists at Georgetown University Medical Center (GUMC) have discovered a brain anomaly that explains why some people diagnosed with autism cannot easily recognize faces — a deficit linked to the impairments in social interactions considered to be the hallmark of the disorder.
They also say that the novel neuroimaging analysis technique they developed to arrive at this finding is likely to help link behavioral deficits to differences at the neural level in a range of neurological disorders.

The final manuscript published March 15 in the online journal NeuroImage: Clinical, the scientists say that in the brains of many individuals with autism, neurons in the brain area that processes faces (the fusiform face area, or FFA) are too broadly "tuned" to finely discriminate between facial features of different people. They made this discovery using a form of functional magnetic resonance imaging (fMRI) that scans output from the blueberry-sized FFA, located behind the right ear.

"When your brain is processing faces, you want neurons to respond selectively so that each is picking up a different aspect of individual faces. The neurons need to be finely tuned to understand what is dissimilar from one face to another," says the study's senior investigator, Maximilian Riesenhuber, PhD., an associate professor of neuroscience at GUMC.

"What we found in our 15 adult participants with autism is that in those with more severe behavioral deficits, the neurons are more broadly tuned, so that one face looks more like another, as compared with the fine tuning seen in the FFA of typical adults," he says.

"And we found evidence that reduced selectivity in FFA neurons corresponded to greater behavioral deficits in everyday face recognition in our participants. This makes sense. If your neurons cannot tell different faces apart, it makes it more difficult to tell who is talking to you or understand the facial expressions that are conveyed, which limits social interaction."

Riesenhuber adds that there is huge variation in the ability of individuals diagnosed with autism to discriminate faces, and that some autistic people have no problem with facial recognition.

"But for those that do have this challenge, it can have substantial ramifications — some researchers believe deficits in face processing are at the root of social dysfunction in autism," he says.

The neural basis for face processing
Neuroscientists have used traditional fMRI studies in the past to probe the neural bases of behavioral differences in people with autism, but these studies have produced conflicting results, says Riesenhuber. "The fundamental problem with traditional fMRI techniques is that they can tell which parts of the brain become active during face processing, but they are poor at directly measuring neuronal selectivity," he says, "and it is this neuronal selectivity that predicts face processing performance, as shown in our previous studies."

To test their hypothesis that differences in neuronal selectivity in the FFA are foundational to differences in face processing abilities in autism, Riesenhuber and the study's lead author, neuroscientist Xiong Jiang, PhD, developed a novel brain imaging analysis technique, termed local regional heterogeneity, to estimate neuronal selectivity.

"Local regional heterogeneity, or Hcorr, as we called it, is based on the idea that neurons that have similar selectivities will on average show similar responses, whereas neurons that like different stimuli will respond differently," says Jiang. "This means that individuals with face processing deficits should show more homogeneous activity in their FFA than individuals with more typical face recognition abilities."

They tested the method in 15 adults with autism and 15 adults without the disorder. The autistic participants also underwent a standard assessment of social/behavioral functioning.

The researchers found that in each autistic participant, behavioral ability to tell faces apart was tightly linked to levels of tuning specificity in the right FFA as estimated with Hcorr. This finding was confirmed by another advanced imaging technique, fMRI rapid adaptation, shown by the group in previous work to be a good estimator of neuronal selectivity.

"Compared to the more well-established fMRI-rapid adaptation technique, Hcorr has several significant advantages," says Jiang. "Hcorr is more sensitive and can estimate neuronal selectivity as well as fMRI rapid adaptation, but with much shorter scans, and Hcorr can even estimate neuronal selectivity using data from resting state scans, thus making the technique suitable even for individuals that cannot perform complicated tasks in the scanner, such as low-functioning autistic adults, or young children."

"The study suggests that, just as in typical adults, the FFA remains the key region responsible for face processing and that changes in neuronal selectivity in this area are foundational to the variability in face processing abilities found in autism. Our study identifies a clear target for intervention," says Riesenhuber. Indeed, after the study was completed, the researchers successfully attempted to improve facial recognition skills in an autistic participant. They showed the participant pairs of faces that were very dissimilar at first, but became increasingly similar, and found that FFA tuning improved along with behavioral ability to tell the faces apart. "This suggests high-level brain areas may still be somewhat plastic in adulthood," says Riesenhuber.

The study was funded by a grant from the National Institute of Mental Health (R01MH076281), a grant from the National Science Foundation (0449743), National Institutes of Health grants (IDDRC P30HD40677 and GCRC M01-RR13297).

About Georgetown University Medical Center
Georgetown University Medical Center is an internationally recognized academic medical center with a three-part mission of research, teaching and patient care (through MedStar Health). GUMC's mission is carried out with a strong emphasis on public service and a dedication to the Catholic, Jesuit principle of cura personalis -- or "care of the whole person." The Medical Center includes the School of Medicine and the School of Nursing & Health Studies, both nationally ranked; Georgetown Lombardi Comprehensive Cancer Center, designated as a comprehensive cancer center by the National Cancer Institute; and the Biomedical Graduate Research Organization (BGRO), which accounts for the majority of externally funded research at GUMC including a Clinical Translation and Science Award from the National Institutes of Health.

Karen Mallet | EurekAlert!
Further information:
http://www.georgetown.edu

More articles from Life Sciences:

nachricht Modern genetic sequencing tools give clearer picture of how corals are related
17.08.2017 | University of Washington

nachricht The irresistible fragrance of dying vinegar flies
16.08.2017 | Max-Planck-Institut für chemische Ökologie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Gold shines through properties of nano biosensors

17.08.2017 | Physics and Astronomy

Greenland ice flow likely to speed up: New data assert glaciers move over sediment, which gets more slippery as it gets wetter

17.08.2017 | Earth Sciences

Mars 2020 mission to use smart methods to seek signs of past life

17.08.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>