Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Detecting H1N1 faster than ever using Omics SmartAmp technology

03.08.2009
With the rise of (H1N1) cases around the world, there is a pressing need at medical institutions to detect infections.

As a part of emergency government research aimed at addressing this need, RIKEN and University of Tokyo, are developing an H1N1 detection technique based on its SmartAmp technology.

With the number of novel influenza A (H1N1) cases increasing in countries around the world, the rapid spread of the virus has triggered worldwide alarm. There is a pressing need at medical institutions for methods to detect whether individuals are infected with the virus in order to effectively slow its spread.

As a part of emergency government research aimed at addressing this need, the RIKEN Omics Science Center (OSC), in cooperation with the Institute of Medical Science at the University of Tokyo, is developing an H1N1 detection technique based on its SmartAmp technology.

The SmartAmp (Smart Amplification Process) reduces the single nucleotide polymorphism (SNP) analysis time to just half an hour, and the precise results thus produced allow genetic diagnosis to be carried out immediately upon initial consultation. Using this technology, OSC has developed methods for detecting the regular seasonal influenza A virus, the H3N2 virus, and the susceptibility of these viruses to Tamiflu treatment. Most laboratories continue to use the RT-PCR system, which for H1N1 necessitates reverse transcription in order to convert RNA into DNA (H1N1 is an RNA virus). The SmartAmp approach carries out this step in parallel with DNA amplification. The time and effort required for the new technique is thus roughly the same as in the conventional SmartAmp process.

OSC researchers are currently applying SmartAmp for diagnosis of the H1N1 virus, as well as developing reagents for virus detection and optimizing the conditions for the reagents. Once optimization is complete, tests will be performed on actual samples from patients at the Osaka Prefectural Institute of Public Health. In cooperation with the Infectious Disease Surveillance Center and the International Medical Center of Japan, the goal is to deploy the technique to clinics within the next six months.

Saeko Okada | Research asia research news
Further information:
http://www.rikenresearch.riken.jp/roundup/763/
http://www.researchsea.com

More articles from Life Sciences:

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

nachricht Stingless bees have their nests protected by soldiers
24.02.2017 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>