Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Detecting H1N1 faster than ever using Omics SmartAmp technology

03.08.2009
With the rise of (H1N1) cases around the world, there is a pressing need at medical institutions to detect infections.

As a part of emergency government research aimed at addressing this need, RIKEN and University of Tokyo, are developing an H1N1 detection technique based on its SmartAmp technology.

With the number of novel influenza A (H1N1) cases increasing in countries around the world, the rapid spread of the virus has triggered worldwide alarm. There is a pressing need at medical institutions for methods to detect whether individuals are infected with the virus in order to effectively slow its spread.

As a part of emergency government research aimed at addressing this need, the RIKEN Omics Science Center (OSC), in cooperation with the Institute of Medical Science at the University of Tokyo, is developing an H1N1 detection technique based on its SmartAmp technology.

The SmartAmp (Smart Amplification Process) reduces the single nucleotide polymorphism (SNP) analysis time to just half an hour, and the precise results thus produced allow genetic diagnosis to be carried out immediately upon initial consultation. Using this technology, OSC has developed methods for detecting the regular seasonal influenza A virus, the H3N2 virus, and the susceptibility of these viruses to Tamiflu treatment. Most laboratories continue to use the RT-PCR system, which for H1N1 necessitates reverse transcription in order to convert RNA into DNA (H1N1 is an RNA virus). The SmartAmp approach carries out this step in parallel with DNA amplification. The time and effort required for the new technique is thus roughly the same as in the conventional SmartAmp process.

OSC researchers are currently applying SmartAmp for diagnosis of the H1N1 virus, as well as developing reagents for virus detection and optimizing the conditions for the reagents. Once optimization is complete, tests will be performed on actual samples from patients at the Osaka Prefectural Institute of Public Health. In cooperation with the Infectious Disease Surveillance Center and the International Medical Center of Japan, the goal is to deploy the technique to clinics within the next six months.

Saeko Okada | Research asia research news
Further information:
http://www.rikenresearch.riken.jp/roundup/763/
http://www.researchsea.com

More articles from Life Sciences:

nachricht Researchers uncover protein-based “cancer signature”
05.12.2016 | Universität Basel

nachricht The Nagoya Protocol Creates Disadvantages for Many Countries when Applied to Microorganisms
05.12.2016 | Leibniz-Institut DSMZ-Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

High-precision magnetic field sensing

05.12.2016 | Power and Electrical Engineering

Construction of practical quantum computers radically simplified

05.12.2016 | Information Technology

NASA's AIM observes early noctilucent ice clouds over Antarctica

05.12.2016 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>