Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Decoding monkey movements

High-performance neuroprosthetic devices may result from a new technique for recording neuronal activity

Producing accurate and stable, long-term readings of neuronal activity using a brain–machine interface (BMI) is now possible thanks to work by Naotaka Fujii and his colleagues at the RIKEN Brain Science Institute, Wako1. Their results could help researchers to develop durable and versatile neural prostheses for rehabilitation patients.

BMIs read neural activity associated with planning and executing movements and decode it into commands that are relayed to an external device such as a computer cursor or robotic arm. This normally involves recording simultaneously from multiple, single neurons, so the recordings are unstable and the decoding model needs re-calibration on a daily basis.

Fujii and colleagues used an alternative technique called electrocorticography, in which an array of electrodes is used to record the population activity of cortical neurons.

Electrocorticography is often used to evaluate epileptic patients before neurosurgery but is not normally used for longer than two weeks. It was thought to provide a low fidelity signal for BMIs, because the electrodes record neural activity from the cortical surface, rather than within the cortex.

To overcome this, the researchers designed an electrode array for long-term recording, and developed a novel decoding algorithm that samples neural activity from multiple brain regions.

After implanting the electrodes into the brains of monkeys, so that they spanned multiple brain regions, Fujii and colleagues trained the animals to spontaneously reach out and grasp food presented to them. The monkeys wore custom-made jackets fitted with reflective markers at the shoulders, elbows and wrists. The researchers then recorded the monkeys’ arm movements using a motion capture system, and correlated them with the neuronal activity recorded by the electrodes.

By decoding the signals, they could predict the trajectory and orientation of the monkeys’ arms in three dimensions. The accuracy of the decoding was comparable to that of existing BMIs which record activity from single cells. Furthermore, the recordings were highly stable, and could be decoded for several months without recalibration.

The new recording technique should prove to be useful for researchers investigating movement control and higher cognitive functions. It could also lead to versatile devices that can be implanted for long periods of time, to aid patients with brain damage, spinal cord injury, and neurodegenerative conditions such as amyotrophic lateral sclerosis, notes Fujii.

“Our electrode array is still not ready for long-term use in patients, because of the risk of infection,” says Fujii, “but we are now developing a fully implantable wireless device to prevent this.”

The corresponding author for this highlight is based at the Laboratory for Adaptive Intelligence, RIKEN Brain Science Institute

Journal information

1. Chao, Z.C., Nagasaka, Y. & Fujii, N. Long-term asynchronous decoding of arm motion using electrocorticographic signals in monkeys. Frontiers in Neuroengineering 3, 3–13 (2010)

gro-pr | Research asia research news
Further information:

More articles from Life Sciences:

nachricht Molecular doorstop could be key to new tuberculosis drugs
20.03.2018 | Rockefeller University

nachricht Modified biomaterials self-assemble on temperature cues
20.03.2018 | Duke University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

Im Focus: Tiny implants for cells are functional in vivo

For the first time, an interdisciplinary team from the University of Basel has succeeded in integrating artificial organelles into the cells of live zebrafish embryos. This innovative approach using artificial organelles as cellular implants offers new potential in treating a range of diseases, as the authors report in an article published in Nature Communications.

In the cells of higher organisms, organelles such as the nucleus or mitochondria perform a range of complex functions necessary for life. In the networks of...

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

Im Focus: Surveying the Arctic: Tracking down carbon particles

Researchers embark on aerial campaign over Northeast Greenland

On 15 March, the AWI research aeroplane Polar 5 will depart for Greenland. Concentrating on the furthest northeast region of the island, an international team...

Im Focus: Unique Insights into the Antarctic Ice Shelf System

Data collected on ocean-ice interactions in the little-researched regions of the far south

The world’s second-largest ice shelf was the destination for a Polarstern expedition that ended in Punta Arenas, Chile on 14th March 2018. Oceanographers from...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

Latest News

Physicists made crystal lattice from polaritons

20.03.2018 | Physics and Astronomy

Mars' oceans formed early, possibly aided by massive volcanic eruptions

20.03.2018 | Physics and Astronomy

Thawing permafrost produces more methane than expected

20.03.2018 | Earth Sciences

Science & Research
Overview of more VideoLinks >>>