Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Dark proteome as the focus of a new Priority Program funded by the German Research Foundation

01.06.2018

Edward Lemke of Mainz University to coordinate the DFG Priority Program researching intrinsically disordered proteins and their function in the cell

Professor Edward Lemke will be coordinating a new Priority Program researching the formation and function of characteristic protein complexes in the cell. The German Research Foundation (Deutsche Forschungsgemeinschaft, DFG) has approved the establishment of the program from 2019, with a budget of EUR 6 million in the first three years.


Dark proteome: The new DFG Priority Program aims to shed light on the molecular mechanisms that occur in the protein droplets.

photo/©: Gemma Estrada Girona

The Molecular Mechanisms of Functional Phase Separation program (SPP 2191) is in one of the most groundbreaking research areas in the life sciences supported by the German Research Foundation. In January 2019, Lemke was appointed Professor of Synthetic Biophysics at Johannes Gutenberg University Mainz (JGU) and, conjointly, an Adjunct Director at the Institute of Molecular Biology (IMB). He is also a fellow of Mainz University's Gutenberg Research College. As a biophysical chemist, Lemke is a pioneer in the field of intrinsically disordered proteins.

"The DFG approval of the program is further proof of the excellence of life science research in Mainz and also represents another milestone in the successful collaboration between Mainz University and the Institute of Molecular Biology. As an Adjunct Professor, Lemke is able to link his research at the university particularly closely with his work at IMB.

The dual affiliation opens up unique synergies in his discipline," explained the Minister of Science of Rhineland-Palatinate, Professor Konrad Wolf. "Just a few days ago the nonprofit Boehringer Ingelheim Foundation and the state of Rhineland-Palatinate announced that they are granting IMB a further EUR 106 million from 2020 to 2027. The announcement of the new DFG program to be based at Mainz University validates this funding decision."

Partially structured proteins for highly dynamic compartments

Proteins are the building blocks of life, present in every cell. They form muscle tissue and play essential roles as enzymes and in the immune response, to name just a few examples. The function of proteins was thought so far to be essentially dependent on their three-dimensional structure which is the result of the way in which the amino acid chains are folded.

However, not all proteins have an ordered three-dimensional structure. A relatively large proportion, in humans estimated at over 30 percent, is formed by disordered or partially-ordered proteins. These intrinsically disordered proteins have, as a group, been termed the dark proteome. How these structures are employed by cells to enable novel dynamic functions was discovered only a few years ago.

"Our cells contain protein droplets, which swim in the cell fluid like oil drops on water," Lemke described the current status of research. The protein droplets form via phase separation, in which the cell's "spaghetti molecules," i.e., the intrinsically disordered proteins and single-strand RNA, spontaneously bind together at high concentrations.

"In the cells, new compartments form that are not separated from the rest of the cell by a membrane. These are small protein-RNA factories, which perform new functions and are highly dynamic," explained Lemke. The nucleolus in the cell nucleus, in which many of the cell's fundamental processes occur, is one such mini factory, while stress granules, which the cell forms in response to stress, are another example. However, when proteins incorrectly aggregate they can also result in a variety of diseases.

Understanding phase separation as a functional instrument of the cell

The new DFG Priority Program aims to shed light on these protein structures. The term "dark proteome" refers to the difficulty in visualizing the intrinsically disordered proteins in their original spaghetti-like state, making them difficult to study. "The focus of the Priority Program is to understand how cells exploit the phase separation. We are keen to find out the new functions that the collective of proteins perform. These are fundamental processes that, up to now, biology and the life sciences have largely overlooked," asserted Lemke.

The scientists involved in SPP 2191 will be employing groundbreaking new experimental methods. Lemke also hopes that many concepts and techniques from polymer chemistry can be transferred into the life sciences. Thus, one potential source of collaboration is the Max Planck Institute for Polymer Research in Mainz.

The German Research Foundation has now invited proposals for the newly approved Priority Program to select individual project partners for the overarching subject area. DFG Priority Programs are usually funded for six years.

Image:
http://www.uni-mainz.de/bilder_presse/10_imp_phasenseparation_spp.jpg
Dark proteome: The new DFG Priority Program aims to shed light on the molecular mechanisms that occur in the protein droplets.
photo/©: Gemma Estrada Girona

Contact:
Professor Dr. Edward Lemke
Synthetic Biophysics
Institute of Molecular Physiology
Johannes Gutenberg University Mainz
55099 Mainz, GERMANY
e-mail: edlemke@uni-mainz.de
http://www.lemkelab.com
http://www.imb.de/research/lemke/research/

Related links:
http://www.gfk.uni-mainz.de/eng/2266.php – Professor Edward Lemke at the Gutenberg Research College (GRC)
https://www.embl.de/research/units/scb/lemke/index.html – Lemke Group "High resolution studies of protein plasticity" at the European Molecular Biology Laboratory (EMBL)
http://www.dfg.de/en/research_funding/programmes/coordinated_programmes/priority... – DFG Priority Programs
http://www.dfg.de/en/research_funding/announcements_proposals/2018/info_wissensc... – Call for proposals for the SPP 2191 DFG Priority Program
http://www.spp2191.com/ – website of the SPP 2191 DFG Priority Program

Petra Giegerich | idw - Informationsdienst Wissenschaft

More articles from Life Sciences:

nachricht Tag it EASI – a new method for accurate protein analysis
19.06.2018 | Max-Planck-Institut für Biochemie

nachricht How to track and trace a protein: Nanosensors monitor intracellular deliveries
19.06.2018 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

Im Focus: Photoexcited graphene puzzle solved

A boost for graphene-based light detectors

Light detection and control lies at the heart of many modern device applications, such as smartphone cameras. Using graphene as a light-sensitive material for...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Carbon nanotube optics provide optical-based quantum cryptography and quantum computing

19.06.2018 | Physics and Astronomy

How to track and trace a protein: Nanosensors monitor intracellular deliveries

19.06.2018 | Life Sciences

New material for splitting water

19.06.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>