Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Danish researchers release ground-breaking knowledge about calcium pumps in cells

22.10.2012
When animals and plants are exposed to influences such as bacterial attack, odour and cold, calcium ions flow into the cells.

The calcium provides the cells with a signal about what is going on outside, but as high concentrations of calcium are toxic to the cells, it must be quickly pumped out again. Researchers from the Danish National Research Foundation's PUMPkin Centre at both the University of Copenhagen and Aarhus University have now shown that calcium pumps in the cell's outer membrane adjust the pump speed very accurately to the calcium concentration. These findings have just been published in the prestigious journal Nature.

The calcium pump is located in the thin membrane that surrounds the cells of humans, animals and plants. Leading researchers from Aarhus University and the University of Copenhagen have now provided new information of how the calcium pump regulates the amount of calcium in the cells. This amount is critical to the health and survival of the cell.

"It turns out that the calcium pump can accurately measure the cell's calcium content and adjust its speed in accordance with this information. This prevents the concentration of calcium ions in the cytoplasm from reaching a critical concentration that damages the cells. The calcium pump is inactive when the concentration of calcium is low, but it is activated stepwise when the calcium concentration increases," say Postdoctoral Fellows Henning Tidow and Lisbeth Rosager Poulsen, who took part in the joint research project.

The researchers' starting point was the calcium pump located in the cell membrane of the model plant thale cress (Arabidopsis thaliana), but the regulatory mechanism also applies to the corresponding calcium pump in humans and animals.

Calcium pumps bind two calmodulin proteins

Previous studies have shown that calcium pumps in both animals and plants work together with a protein called calmodulin. When there are many calcium ions in a cell, some of these bind to calmodulin, which is thereby able to activate the calcium pump.

"We purified the part of the calcium pump that interacts with calcium-activated calmodulin, and we managed to crystallise a protein complex. To our great surprise, we found that the calcium pump binds two calmodulin proteins, and not just one as always assumed," explains Dr Tidow.

Calcium pump with three-step regulation

The fact that two calmodulin proteins are involved in the regulation of the calcium pump activity means that the calcium pump has three steps. It is switched off when no calcium-activated calmodulin is bound, it pumps at medium speed when binding occurs at one calmodulin protein, and it pumps at full speed when both calmodulin proteins are bound.

"Calcium pumps need considerable energy to transport calcium out of the cell. It is therefore important that they are only activated when there is a need to remove calcium. With two calmodulin-binding domains in the calcium pump, the cell can adjust the transportation to be energy efficient, at the same time as being able to quickly reduce the number of calcium ions if the concentration approaches a toxic level," Dr Poulsen concludes.

Mathematics reveals biological function

The researchers also used mathematical network modelling to further identify whether the calcium pump works differently depending on whether it is activated by zero, one or two calmodulin proteins. This revealed another characteristic of calcium pump regulation of calcium in the cell.

"We could show that the cell only responded to incoming calcium when concentrations above carefully defined threshold values were found. This may be important for the way cells define their status in the circadian rhythm or during cell division, for example," concludes Dr Tidow.

The results have just been published in the prestigious international journal Nature, and they may form the basis for the development of new drugs and new methods of food production.

The research project was carried out as a unique interdisciplinary collaboration – in disciplines such as bioinformatics, protein crystallography, biophysics, enzyme kinetics, cell biology and particularly mathematical network modelling – between researchers from Aarhus University and the University of Copenhagen at the Centre for Membrane Pumps in Cells and Disease (PUMPkin) – one of the Danish National Research Foundation's Centres of Excellence – www.PUMPkin.au.dk.

Contact

Postdoctoral Fellow Henning Tidow,
Tlf. +45 8942 5262
Email: het@mb.au.dk
Department of Molecular Biology and Genetics, PUMPkin,
Aarhus University, Denmark
Postdoctoral Fellow Lisbeth Rosager Poulsen
Tlf.+45 3533 2595
Email: lrpo@life.ku.dk
Department of Plant and Environmental Sciences, PUMPkin,
University of Copenhagen, Denmark
Professor Michael Broberg Palmgren
Tlf. +45 3533 2592
Email: palmgren@life.ku.dk
Department of Plant and Environmental Sciences, PUMPkin,
University of Copenhagen, Denmark
Director, Professor Poul Nissen
Tlf.+45 2899 2295
Email: pn@mb.au.dk
Department of Molecular Biology and Genetics, PUMPkin,
Aarhus University, Denmark

Carl Hagman | EurekAlert!
Further information:
http://www.ku.dk

More articles from Life Sciences:

nachricht Cryo-electron microscopy achieves unprecedented resolution using new computational methods
24.03.2017 | DOE/Lawrence Berkeley National Laboratory

nachricht How cheetahs stay fit and healthy
24.03.2017 | Forschungsverbund Berlin e.V.

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>