Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cystic fibrosis gene typo is a double whammy

15.11.2010
Researchers at the University of North Carolina at Chapel Hill School of Medicine have demonstrated that the gene mutated in cystic fibrosis not only controls traffic on the chloride highway, but also keeps the sodium highway from being overused.

An imbalance of salt and water in patients with cystic fibrosis makes their lungs clog up with sticky mucus that is prone to infection. The cause of the offending imbalance is a well-known genetic error, one that blocks the molecular expressway for tiny chloride ions to move across the surface of the lungs.

But how does that same gene mutation upset a parallel roadway controlling the flow of the other component of salt, sodium ions? Now, researchers at the University of North Carolina at Chapel Hill School of Medicine have found the answer, demonstrating that the gene mutated in cystic fibrosis not only controls traffic on the chloride highway, but also keeps the sodium highway from being overused.

The finding suggests that the infamous mutation – in a gene called CFTR – is a double whammy, affecting the flow of two different ions that are important to keep the mucus on the surfaces of the airways hydrated. Clarifying this link between the genetic defect and the thick sticky mucus in cystic fibrosis lungs could help researchers develop better therapies.

“It is very important to slow down this sodium channel when it is overactive before it leads to dehydration of the mucus in patient airways,” said Martina Gentzsch, PhD, assistant professor of cell and developmental biology at UNC and lead author of a study published Oct. 15 in the Journal of Biological Chemistry. “If we can understand the mechanism of how CFTR does that, it might give us a new approach to treat the disease.”

Cystic fibrosis is one of the most common genetic diseases in Caucasians, affecting approximately 1 in 3500 births in the United States. It is caused by a defect in the gene that codes for a protein called cystic fibrosis transmembrane conductance regulator or CFTR. Cystic fibrosis patients with the most severe disease have very little of the CFTR protein, and this affects the way chloride ions move across many tissues in the body. A number of scientists have hypothesized that CFTR also controls the movement of other ions, such as through the epithelial sodium channel or ENaC.

This channel has been shown to be overactive in transporting sodium ions in the airways of cystic fibrosis patients, so Gentzsch and her colleagues set out to determine why. First, they looked at the effects of the CFTR gene on the sodium channel in xenopus oocytes, commonly known as frog eggs. They found that when the CFTR gene was intact, the sodium channel was kept in check.

The researchers followed up with a number of biochemical and electrophysiological experiments and showed that the chloride channel and the sodium channels interact. Gentzsch and her colleagues also confirmed their results in human primary airway epithelial cells from healthy volunteers and patients with cystic fibrosis, showing that the sodium channel was in fact more active when there was no functional CFTR.

Now that they know that the chloride channel can actually influence the function of the sodium channel, Gentzsch is trying to find out how.

“We don’t know if it is doing this by basically acting like a roadblock, physically interfering with the proteases that activate ENaC, or if it is doing it by some indirect means,” said Gentzsch. “That is what we are investigating at the moment, so there are a lot of more questions to be answered.”

The research was funded by the National Institutes of Health and performed at the Cystic Fibrosis/Pulmonary Research and Treatment Center at the University of North Carolina, which also receives funding from the Cystic Fibrosis Foundation. Study co-authors include Richard C. Boucher, MD, director of the Cystic Fibrosis/Pulmonary Research and Treatment Center; and M. Jackson Stutts, PhD, professor of medicine.

Les Lang | EurekAlert!
Further information:
http://www.unc.edu

More articles from Life Sciences:

nachricht Enduring cold temperatures alters fat cell epigenetics
19.04.2018 | University of Tokyo

nachricht Full of hot air and proud of it
18.04.2018 | University of Pittsburgh

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

Im Focus: Like a wedge in a hinge

Researchers lay groundwork to tailor drugs for new targets in cancer therapy

In the fight against cancer, scientists are developing new drugs to hit tumor cells at so far unused weak points. Such a “sore spot” is the protein complex...

Im Focus: The Future of Ultrafast Solid-State Physics

In an article that appears in the journal “Review of Modern Physics”, researchers at the Laboratory for Attosecond Physics (LAP) assess the current state of the field of ultrafast physics and consider its implications for future technologies.

Physicists can now control light in both time and space with hitherto unimagined precision. This is particularly true for the ability to generate ultrashort...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Diamond-like carbon is formed differently to what was believed -- machine learning enables development of new model

19.04.2018 | Materials Sciences

Electromagnetic wizardry: Wireless power transfer enhanced by backward signal

19.04.2018 | Physics and Astronomy

Ultrafast electron oscillation and dephasing monitored by attosecond light source

19.04.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>