Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cystic fibrosis gene typo is a double whammy

15.11.2010
Researchers at the University of North Carolina at Chapel Hill School of Medicine have demonstrated that the gene mutated in cystic fibrosis not only controls traffic on the chloride highway, but also keeps the sodium highway from being overused.

An imbalance of salt and water in patients with cystic fibrosis makes their lungs clog up with sticky mucus that is prone to infection. The cause of the offending imbalance is a well-known genetic error, one that blocks the molecular expressway for tiny chloride ions to move across the surface of the lungs.

But how does that same gene mutation upset a parallel roadway controlling the flow of the other component of salt, sodium ions? Now, researchers at the University of North Carolina at Chapel Hill School of Medicine have found the answer, demonstrating that the gene mutated in cystic fibrosis not only controls traffic on the chloride highway, but also keeps the sodium highway from being overused.

The finding suggests that the infamous mutation – in a gene called CFTR – is a double whammy, affecting the flow of two different ions that are important to keep the mucus on the surfaces of the airways hydrated. Clarifying this link between the genetic defect and the thick sticky mucus in cystic fibrosis lungs could help researchers develop better therapies.

“It is very important to slow down this sodium channel when it is overactive before it leads to dehydration of the mucus in patient airways,” said Martina Gentzsch, PhD, assistant professor of cell and developmental biology at UNC and lead author of a study published Oct. 15 in the Journal of Biological Chemistry. “If we can understand the mechanism of how CFTR does that, it might give us a new approach to treat the disease.”

Cystic fibrosis is one of the most common genetic diseases in Caucasians, affecting approximately 1 in 3500 births in the United States. It is caused by a defect in the gene that codes for a protein called cystic fibrosis transmembrane conductance regulator or CFTR. Cystic fibrosis patients with the most severe disease have very little of the CFTR protein, and this affects the way chloride ions move across many tissues in the body. A number of scientists have hypothesized that CFTR also controls the movement of other ions, such as through the epithelial sodium channel or ENaC.

This channel has been shown to be overactive in transporting sodium ions in the airways of cystic fibrosis patients, so Gentzsch and her colleagues set out to determine why. First, they looked at the effects of the CFTR gene on the sodium channel in xenopus oocytes, commonly known as frog eggs. They found that when the CFTR gene was intact, the sodium channel was kept in check.

The researchers followed up with a number of biochemical and electrophysiological experiments and showed that the chloride channel and the sodium channels interact. Gentzsch and her colleagues also confirmed their results in human primary airway epithelial cells from healthy volunteers and patients with cystic fibrosis, showing that the sodium channel was in fact more active when there was no functional CFTR.

Now that they know that the chloride channel can actually influence the function of the sodium channel, Gentzsch is trying to find out how.

“We don’t know if it is doing this by basically acting like a roadblock, physically interfering with the proteases that activate ENaC, or if it is doing it by some indirect means,” said Gentzsch. “That is what we are investigating at the moment, so there are a lot of more questions to be answered.”

The research was funded by the National Institutes of Health and performed at the Cystic Fibrosis/Pulmonary Research and Treatment Center at the University of North Carolina, which also receives funding from the Cystic Fibrosis Foundation. Study co-authors include Richard C. Boucher, MD, director of the Cystic Fibrosis/Pulmonary Research and Treatment Center; and M. Jackson Stutts, PhD, professor of medicine.

Les Lang | EurekAlert!
Further information:
http://www.unc.edu

More articles from Life Sciences:

nachricht Cryo-electron microscopy achieves unprecedented resolution using new computational methods
24.03.2017 | DOE/Lawrence Berkeley National Laboratory

nachricht How cheetahs stay fit and healthy
24.03.2017 | Forschungsverbund Berlin e.V.

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>