Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cystic fibrosis disrupts pancreas two ways in CF-related diabetes

18.09.2012
A new University of Iowa study suggests there are two root causes of a type of diabetes associated with cystic fibrosis (CF). The findings, which already have sparked a clinical trial, may guide development of new treatments or even help prevent diabetes in patients with CF.

Almost half of patients with CF will develop diabetes by age 30 and almost one quarter will develop it in their teens. In addition to the health problems caused by high blood sugar, diabetes also worsens lung disease and increases the risk of dying for people with CF. However, the underlying cause of CF-related diabetes is not well understood, and differs from the causes of type 1 or type 2 diabetes.


A new University of Iowa study suggests there are two root causes of a type of diabetes associated with cystic fibrosis (CF). Using a ferret model of CF, the study shows that CF progressively damages the pancreas, disrupting insulin production. More surprisingly, the study also found that CF disrupts the pancreas' insulin-producing islet cells from birth, well before the physical damage occurs. The image shows a confocal 3D rendering of an isolated CF ferret islet stained for insulin (red), glucagon (green), and DAPI nuclear stain (blue), superimposed over a background ferret pancreas section similarly stained for the same antigens.

Credit: University of Iowa

Using a new animal model of CF, the study found two abnormalities that affect the pancreas, the organ that produces insulin, which controls blood sugar levels. The study shows that CF progressively damages the pancreas, disrupting insulin production. More surprisingly, the study also found that CF disrupts the pancreas' insulin production even before the physical damage occurs. The results were published Sept. 17 in the Journal of Clinical Investigation.

Ferrets used to study CF-related diabetes

The UI team studied ferrets with CF that were recently developed in the lab of John Engelhardt, Ph.D., professor and head of anatomy and cell biology at the UI Carver College of Medicine.

"We turned to ferrets because studies in humans and mice have been unable to determine the underlying cause of many CF complications, including diabetes," Engelhardt says. "We found that ferrets with CF, just like humans, spontaneously develop diabetes leaving them unable to prevent high blood sugar levels following a meal."

In humans, CF damages the pancreas, which reduces insulin production. The researchers, including lead authors Alicia Olivier, Ph.D., UI assistant professor of pathology, and Yaling Yi and Xingshen Sun, Ph.D., from Engelhardt's lab, found that CF ferrets developed diabetes at 1-2 months of age, the same age the ferrets experienced severe damage to the pancreas.

"This finding fits well with the long-held view that CF-related diabetes stems from physical damage to the pancreas, which limits the amount of insulin the pancreas can produce," says study co-leader Andrew Norris, M.D., Ph.D., associate professor of pediatrics and biochemistry.

Engelhardt and Norris also are members of the Fraternal Order of Eagles Diabetes Research Center at UI.

CF disrupts insulin production from birth

However, studies in newborn CF ferrets led to an interesting twist in the team's findings. The pancreas in newborn ferrets is essentially healthy, so the team expected normal insulin levels and normal blood sugar regulation. Instead, newborn CF ferrets were unable to control spikes in blood sugar. The study showed that this was because the pancreas in these animals did not secrete the appropriate amount of insulin in response to a spike in blood sugar.

Further investigation homed in on groups of cells with the pancreas -- called islets -- as the source of the problem. Islets are the body's insulin-producing factories. The researchers found that islets from newborn CF ferrets did not secrete insulin normally.

"The finding of abnormal sugar-regulated insulin secretion by isolated CF islets demonstrates for the first time that some of the problems that lead to diabetes in CF patients likely reside within cells of the islet," Engelhardt says.

Likening the CF defect in islets to a broken sugar-thermometer, Engelhardt adds, "CF islets fail to adequately sense changes in sugar and this leads to poorly regulated insulin production."

Although the cellular mechanism for this abnormality is not yet known, findings suggest that the chloride channel protein, which is defective in CF, may directly or indirectly control insulin secretion by the islet.

"This indicates that CF causes a second problem which underlies diabetes, separate from pancreatic structural damage," Norris says. "Ultimately, this research will allow us to determine the major root causes of CF-related diabetes, and may help guide development of new therapies and preventative strategies."

Human studies

The new findings already have generated clinical interest in studying the early changes that occur in insulin regulation in infants and young children with CF. Katie Larson Ode, M.D., clinical assistant professor of pediatrics with UI Children's Hospital, and Toni Moran, M.D., at University of Minnesota, have started a clinical trial to study these abnormalities. Additionally, Engelhardt and Norris have teamed up with Aliye Uc, M.D., UI associate professor of pediatrics, to leverage her expertise on pancreatic damage in ongoing studies of animals with CF.

"Although these studies are focused on cystic fibrosis, future insights into how the cystic fibrosis chloride channel functions to regulate insulin secretion may also lead to better treatments for type 2 and other forms of diabetes," Norris concludes.

The study was funded by grants from the National Institutes of Health and the Fraternal Order of Eagles Diabetes Research Center at UI. Additionally, the studies have indirectly benefited from the funding from the Cystic Fibrosis Foundation that was key in generating the CF ferret model.

Jennifer Brown | EurekAlert!
Further information:
http://www.uiowa.edu

More articles from Life Sciences:

nachricht Symbiotic bacteria: from hitchhiker to beetle bodyguard
28.04.2017 | Johannes Gutenberg-Universität Mainz

nachricht Nose2Brain – Better Therapy for Multiple Sclerosis
28.04.2017 | Fraunhofer-Institut für Grenzflächen- und Bioverfahrenstechnik IGB

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>