Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Crosstalk in plant resistance

10.11.2008
Japanese plant biologists have provided the first molecular evidence that when plants are in combat with environmental stressors they are less able to battle invading pathogens.

Researchers unearth molecular evidence of an antagonistic relationship between abiotic and biotic stress defenses in plants

Japanese plant biologists have provided the first molecular evidence that when plants are in combat with environmental stressors they are less able to battle invading pathogens.

Survival in the plant world depends on the ability to resist not only disease but also changes in the physical surroundings. A mechanism known as systemic acquired resistance (SAR) is one of the defenses plants use against biotic threats such as bacteria, viruses and fungi. Their reactions to abiotic stressors such as temperature, drought and salinity are governed by a different system that is influenced by the plant hormone abscisic acid (ABA).

These defense mechanisms may suppress each other, resulting in reduced disease resistance during times of physical stress, according to previous research. Now a team of researchers, led by Hideo Nakashita from the RIKEN Advanced Science Institute in Wako, has performed the first detailed examination of antagonistic crosstalk between these systems.

By stimulating both resistance systems in various mutants of the model mustard plant Arabidopsis, the team showed that induction of the ABA-mediated environmental stress response suppressed the induction of the disease-fighting SAR mechanism.

The researchers, including Michiko Yasuda of the RIKEN Advanced Science Institute, replicated an abiotic hazard by treating Arabidopsis plants with salt. They found that increasing the salinity level significantly suppressed the chemical induction of SAR-based disease resistance. The inhibition of SAR by this response to environmental stress proved to be ABA dependent.

The team also showed that ABA pre-treated Arabidopsis plants could not combat bacterial infection even if SAR-promoting chemicals were introduced. Anti-pathogen resistance genes failed to be expressed in plants that had been treated with ABA, indicating that this chemical, and hence the abiotic stress response, affects the SAR system at a molecular level. Equally, the team found that the activation of SAR suppressed the expression of ABA-responsive and ABA-biosynthesis genes.

Nakashita and his colleagues propose that a three-sided antagonistic interaction between ABA and two other plant hormones, salicyclic acid (SA) and jasmonic acid (JA), controls the response to external abiotic and biotic stresses. They note that this antagonistic crosstalk would be useful in nature because reactions to both disease and environmental stress require significant amounts of energy for gene expression and metabolic changes, and plants need to regulate the amount of resources given to each reaction to survive. ”Clarification of the detailed mechanism of the antagonistic interaction would enable us to improve crop protection and agricultural systems in adverse environments,” says Nakashita.

Reference

1. Yasuda, M., Ishikawa, A., Jikumaru, Y., Seki, M., Umezawa, T., Asami, T., Maruyama-Nakashita, A., Kudo, T., Shinozaki, K., Yoshida, S. & Nakashita, H. Antagonistic interaction between systemic acquired resistance and the abscisic acid-mediated abiotic stress response in Arabidopsis. The Plant Cell 20, 1678–1692 (2008).

The corresponding author for this highlight is based at the RIKEN Plant Acquired Immunity Research Unit

Saeko Okada | ResearchSEA
Further information:
http://www.rikenresearch.riken.jp/research/566/
http://www.researchsea.com

More articles from Life Sciences:

nachricht Fingerprint' technique spots frog populations at risk from pollution
27.03.2017 | Lancaster University

nachricht Parallel computation provides deeper insight into brain function
27.03.2017 | Okinawa Institute of Science and Technology (OIST) Graduate University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Northern oceans pumped CO2 into the atmosphere

27.03.2017 | Earth Sciences

Fingerprint' technique spots frog populations at risk from pollution

27.03.2017 | Life Sciences

Big data approach to predict protein structure

27.03.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>